Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Controlling the shape of Pt-based nanomaterials is a major strategy to enhance the electrocatalytic performance towards the oxygen reduction reaction (ORR). Since the Pt (111) facet exhibits desirable electrochemical properties, Pt nanoplates enclosed by {111} facets are promising candidates. However, plate-shaped Pt crystals have thermodynamically unfavored structures, making syntheses challenging. Here we report a novel precursor-templated route to synthesize Pt nanoplates. Specifically, precipitated (NH4)2PtCl6 prepared in aqueous solution is used as the Pt precursor followed by the addition of NaBH4 as a reducing agent. With domain matching epitaxy, Pt nanoplates grow on the surface of the precipitated precursor, selectively exposing the {111} facets. Compared to those of commercial Pt/C at 0.90 and 0.85 V, the ORR properties of Pt nanoplates display a 1.5- and 5.2-fold enhancement in the mass activity, and a 3.3- and 11.6-fold enhancement in the specific activity, respectively. The superior ORR activities and the unique shape of Pt nanoplates are maintained for at least 5000 potential cycles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d0dt03338c | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!