A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Precursor-templated synthesis of thermodynamically unfavored platinum nanoplates for the oxygen reduction reaction. | LitMetric

Controlling the shape of Pt-based nanomaterials is a major strategy to enhance the electrocatalytic performance towards the oxygen reduction reaction (ORR). Since the Pt (111) facet exhibits desirable electrochemical properties, Pt nanoplates enclosed by {111} facets are promising candidates. However, plate-shaped Pt crystals have thermodynamically unfavored structures, making syntheses challenging. Here we report a novel precursor-templated route to synthesize Pt nanoplates. Specifically, precipitated (NH4)2PtCl6 prepared in aqueous solution is used as the Pt precursor followed by the addition of NaBH4 as a reducing agent. With domain matching epitaxy, Pt nanoplates grow on the surface of the precipitated precursor, selectively exposing the {111} facets. Compared to those of commercial Pt/C at 0.90 and 0.85 V, the ORR properties of Pt nanoplates display a 1.5- and 5.2-fold enhancement in the mass activity, and a 3.3- and 11.6-fold enhancement in the specific activity, respectively. The superior ORR activities and the unique shape of Pt nanoplates are maintained for at least 5000 potential cycles.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0dt03338cDOI Listing

Publication Analysis

Top Keywords

thermodynamically unfavored
8
oxygen reduction
8
reduction reaction
8
properties nanoplates
8
{111} facets
8
nanoplates
6
precursor-templated synthesis
4
synthesis thermodynamically
4
unfavored platinum
4
platinum nanoplates
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!