A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Neoantigen prediction in human breast cancer using RNA sequencing data. | LitMetric

Neoantigen prediction in human breast cancer using RNA sequencing data.

Cancer Sci

Department of Breast and Endocrine Surgery, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan.

Published: January 2021

Neoantigens have attracted attention as biomarkers or therapeutic targets. However, accurate prediction of neoantigens is still challenging, especially in terms of its accuracy and cost. Variant detection using RNA sequencing (RNA-seq) data has been reported to be a low-accuracy but cost-effective tool, but the feasibility of RNA-seq data for neoantigen prediction has not been fully examined. In the present study, we used whole-exome sequencing (WES) and RNA-seq data of tumor and matched normal samples from six breast cancer patients to evaluate the utility of RNA-seq data instead of WES data in variant calling to detect neoantigen candidates. Somatic variants were called in three protocols using: (i) tumor and normal WES data (DNA method, Dm); (ii) tumor and normal RNA-seq data (RNA method, Rm); and (iii) combination of tumor RNA-seq and normal WES data (Combination method, Cm). We found that the Rm had both high false-positive and high false-negative rates because this method depended greatly on the expression status of normal transcripts. When we compared the results of Dm with those of Cm, only 14% of the neoantigen candidates detected in Dm were identified in Cm, but the majority of the missed candidates lacked coverage or variant allele reads in the tumor RNA. In contrast, about 70% of the neoepitope candidates with higher expression and rich mutant transcripts could be detected in Cm. Our results showed that Cm could be an efficient and a cost-effective approach to predict highly expressed neoantigens in tumor samples.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7780012PMC
http://dx.doi.org/10.1111/cas.14720DOI Listing

Publication Analysis

Top Keywords

rna-seq data
20
wes data
12
data
9
neoantigen prediction
8
breast cancer
8
rna sequencing
8
neoantigen candidates
8
tumor normal
8
normal wes
8
rna-seq
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!