Nerve injury induces release of peptides and upregulation of receptors such as substance P and transient receptor potential receptor V1 (TRPV1), which contribute to the development and maintenance of chronic pain. Photobiomodulation therapy (PBMT) is a nonpharmacological strategy that promotes tissue repair and reduces pain and inflammation. However, the molecular basis for PBMT effects on neuropathic pain is still unclear. We investigated the effects of PBMT on substance P, TRPV1, and superficial temperature change in a rodent model of neuropathic pain. We evaluated substance P and TRPV1 in dorsal root ganglia (DRG L4 to L6) at baseline, 14 days after chronic constriction injury (CCI) and after PBMT. We also assessed the superficial temperature of tarsal, metatarsal, tibia, and fibula regions before and after PBMT using infrared thermography. Substance P and TRPV1 levels increased in DRG of CCI rats compared to naive and sham rats and decreased after PBMT. Infrared thermography showed increased temperature of tarsal, metatarsal, tibia, and fibula regions in CCI rats, which was decreased after PBMT. There were no statistical differences between CCI rats with PBMT, sham, and naive rats in any assay. PBMT reduces nociceptive mediators and hind paw and leg's temperature in a rodent model of neuropathic pain, suggesting that PBMT may play a modulatory role in thermoregulation, neurogenic inflammation, and thermal sensitivity in peripheral nerve injuries. Therefore, PBMT appears to be a valuable strategy for neuropathic pain treatment in clinical settings.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10103-020-03187-9 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!