Patients at clinical high-risk (CHR) for psychosis show elevations in [F]DOPA uptake, an estimate of dopamine (DA) synthesis capacity, in the striatum predictive of conversion to schizophrenia. Intrasynaptic DA levels can be inferred from imaging the change in radiotracer binding at D receptors due to a pharmacological challenge. Here, we used methylphenidate, a DA reuptake inhibitor, and [C]-(+)-PHNO, to measure synaptic DA availability in CHR both in striatal and extra-striatal brain regions. Fourteen unmedicated, nonsubstance using CHR individuals and 14 matched control subjects participated in the study. Subjects underwent two [C]-(+)-PHNO scans, one at baseline and one following administration of a single oral dose (60 mg) of methylphenidate. [C]-(+)-PHNO BP, the binding potential relative to the nondisplaceable compartment, was derived using the simplified reference tissue model with cerebellum as reference tissue. The percent change in BP between scans, ΔBP, was computed as an index of synaptic DA availability, and group comparisons were performed with a linear mixed model. An overall trend was found for greater synaptic DA availability (∆BP) in CHR than controls (p = 0.06). This was driven entirely by ∆BP in ventral striatum (-34 ± 14% in CHR, -20 ± 12% in HC; p = 0.023). There were no significant group differences in any other brain region. There were no significant differences in DA transmission in any striatal region between converters and nonconverters, although this finding is limited by the small sample size (N = 2). There was a strong and negative correlation between ΔBP in VST and severity of negative symptoms at baseline in the CHR group (r = -0.66, p < 0.01). We show abnormally increased DA availability in the VST in CHR and an inverse relationship with negative symptoms. Our results suggest a potential early role for mesolimbic dopamine overactivity in CHR. Longitudinal studies are needed to ascertain the significance of the differential topography observed here with the [F]DOPA literature.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41380-020-00934-wDOI Listing

Publication Analysis

Top Keywords

synaptic availability
12
clinical high-risk
8
reference tissue
8
chr
6
imaging synaptic
4
synaptic dopamine
4
availability
4
dopamine availability
4
availability individuals
4
individuals clinical
4

Similar Publications

Ganaxolone: A Review in Epileptic Seizures Associated with Cyclin-Dependent Kinase-Like 5 Deficiency Disorder.

Paediatr Drugs

January 2025

Springer Nature, Private Bag 65901, Mairangi Bay, Auckland, 0754, New Zealand.

Oral ganaxolone (ZTALMY), a synthetic analogue of the endogenous neuroactive steroid allopregnanolone, acts as a positive allosteric modulator of synaptic and extra-synaptic γ-aminobutyric acid (GABA) type A receptor function in the CNS. In the EU and the UK, it is approved for the adjunctive treatment of epileptic seizures associated with cyclin-dependent kinase-like 5 (CDKL5) deficiency disorder (CDD) in patients aged 2-17 years. In a multinational phase III study (Marigold), 17 weeks' therapy with adjunctive ganaxolone, administered orally three times daily with food, significantly reduced 28-day major motor seizure frequency from baseline versus placebo in patients aged 2-19 years with CDD-associated refractory epilepsy.

View Article and Find Full Text PDF

Background: Preliminary studies on epidural motor cortex stimulation (eMCS) for the treatment of drug-resistant neuropathic pain have supported the extension to novel stimulation waveforms, in particular burstDR. However, only a low level of evidence is available. The aim of this retrospective observational study was to compare the analgesic efficacy of burstDR versus tonic eMCS.

View Article and Find Full Text PDF

Understanding GABAergic synapse diversity and its implications for GABAergic pharmacotherapy.

Trends Neurosci

January 2025

Laboratory of Cell Biology and Neuroscience, Institute of Anatomy, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128 Mainz, Germany. Electronic address:

Despite the substantial contribution of disruptions in GABAergic inhibitory neurotransmission to the etiology of psychiatric, neurodevelopmental, and neurodegenerative disorders, surprisingly few drugs targeting the GABAergic system are currently available, partly due to insufficient understanding of circuit-specific GABAergic synapse biology. In addition to GABA receptors, GABAergic synapses contain an elaborate organizational protein machinery that regulates the properties of synaptic transmission. Until recently, this machinery remained largely unexplored, but key methodological advances have now led to the identification of a wealth of new GABAergic organizer proteins.

View Article and Find Full Text PDF

Pharmacotherapy for depression includes drugs such as monoamine oxidase inhibitors (MAOIs), tricyclic antidepressants (TCAs), selective serotonin reuptake inhibitors (SSRIs), noradrenaline (NA) and serotonin (5-HT) reuptake inhibitors (NaSSAs), and atypical antidepressants; these drugs exert differentially beneficial effects on symptoms of depression after acute and chronic treatment in animal models. Said effects are established through neuroplastic mechanisms involving changes in neurogenesis and synaptogenesis as result of the activation of intracellular signaling pathways associated with neurochemical and behavioral changes. Antidepressants increase the synaptic availability of monoamines (monoaminergic hypothesis) such as 5-HT, NA, and gamma-aminobutyric acid (GABA) by inhibiting their reuptake or degradation and activating intracellular signaling pathways such as the responsive element binding protein (cAMP-CREB) cascade, which regulates the expression of genes related to neuroplasticity and neurogenesis, such as brain-derived neurotrophic factor (BDNF), in various brain structures implicated in depression.

View Article and Find Full Text PDF

Recurrent models of orientation selectivity enable robust early-vision processing in mixed-signal neuromorphic hardware.

Nat Commun

January 2025

Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, Via Opera Pia 13, I-16145, Genoa, Italy.

Mixed signal analog/digital neuromorphic circuits represent an ideal medium for reproducing bio-physically realistic dynamics of biological neural systems in real-time. However, similar to their biological counterparts, these circuits have limited resolution and are affected by a high degree of variability. By developing a recurrent spiking neural network model of the retinocortical visual pathway, we show how such noisy and heterogeneous computing substrate can produce linear receptive fields tuned to visual stimuli with specific orientations and spatial frequencies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!