Organic solar cells based on non-fullerene acceptors can show high charge generation yields despite near-zero donor-acceptor energy offsets to drive charge separation and overcome the mutual Coulomb attraction between electron and hole. Here, we use time-resolved optical spectroscopy to show that free charges in these systems are generated by thermally activated dissociation of interfacial charge-transfer states that occurs over hundreds of picoseconds at room temperature, three orders of magnitude slower than comparable fullerene-based systems. Upon free electron-hole encounters at later times, both charge-transfer states and emissive excitons are regenerated, thus setting up an equilibrium between excitons, charge-transfer states and free charges. Our results suggest that the formation of long-lived and disorder-free charge-transfer states in these systems enables them to operate closely to quasi-thermodynamic conditions with no requirement for energy offsets to drive interfacial charge separation and achieve suppressed non-radiative recombination.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7645751PMC
http://dx.doi.org/10.1038/s41467-020-19332-5DOI Listing

Publication Analysis

Top Keywords

charge-transfer states
16
charge separation
12
long-lived disorder-free
8
organic solar
8
solar cells
8
energy offsets
8
offsets drive
8
free charges
8
charge
5
states
5

Similar Publications

Aggregation-induced emission and absorption enhancement of mixed-valent rhenium oxide quantum dots by triethylamine: Implications for food safety monitoring.

J Hazard Mater

December 2024

Department of Chemistry, National Sun Yat-sen University, No. 70 Lienhai Rd., Kaohsiung 80424, Taiwan; Center for Nanoscience & Nanotechnology, National Sun Yat-sen University, No. 70 Lienhai Rd., Kaohsiung 80424, Taiwan; School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, No.100, Shiquan 1st Rd., Kaohsiung 80708, Taiwan. Electronic address:

Food freshness monitoring and volatile amine detection are key to food safety. In this study, we demonstrated the applicability of mixed-valence rhenium oxide quantum dots (MV-ReOQDs), synthesized via the hydrothermal reaction of α-cyclodextrin and rhenium ion precursors, in triethylamine (TEA) sensing. Spectroscopic correlation techniques showed that the developed MV-ReOQDs possessed mixed-valent rhenium, α-cyclodextrin as capped ligand, partially carbonized surface, and amorphous phase structure.

View Article and Find Full Text PDF
Article Synopsis
  • The study evaluates different DFT and TD-DFT methods for simulating ultrafast excited-state dynamics in Fe(II) complexes.
  • The research uses time-resolved X-ray emission spectroscopy data from specific iron complexes to benchmark simulation results between metal-to-ligand charge-transfer (MLCT) and metal-centered (MC) states.
  • Findings suggest that the choice of DFT/TD-DFT method significantly impacts simulation accuracy, with B3LYP* and TPSSh performing best in matching experimental dynamics.
View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on the development of new thermally activated delayed fluorescence (TADF) materials that enhance reverse intersystem crossing (RISC) to prevent triplet-triplet annihilation.
  • Five derivative molecules with different bridging atoms/groups were analyzed using computational modeling to understand their excited state behaviors in toluene.
  • A unique RISC mechanism was observed, predominantly involving T states instead of the usual transitions, which has implications for designing more efficient TADF compounds.
View Article and Find Full Text PDF

Quantum Turnstiles for Robust Measurement of Full Counting Statistics.

Phys Rev Lett

December 2024

Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, USA.

We present a scalable protocol for measuring full counting statistics (FCS) in experiments or tensor-network simulations. In this method, an ancilla in the middle of the system acts as a turnstile, with its phase keeping track of the time-integrated particle flux. Unlike quantum gas microscopy, the turnstile protocol faithfully captures FCS starting from number-indefinite initial states or in the presence of noisy dynamics.

View Article and Find Full Text PDF

Efficient Sampling for Machine Learning Electron Density and Its Response in Real Space.

J Chem Theory Comput

January 2025

Key Laboratory of Precision and Intelligent Chemistry, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.

Electron density is a fundamental quantity that can in principle determine all ground state electronic properties of a given system. Although machine learning (ML) models for electron density based on either an atom-centered basis or a real-space grid have been proposed, the demand for a number of high-order basis functions or grid points is enormous. In this work, we propose an efficient grid-point sampling strategy that combines targeted sampling favoring a large density and a screening of grid points associated with linearly independent atomic features.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!