Piezoelectric tools are the novel ultrasonic methods for effective and safe osteoplasty or osteotomy in comparison with traditional soft and hard tissue approaches using rotating instruments due to lack of microvibrations, ease of control and use, and safer cutting, mainly in complex anatomic areas. Piezoelectric indicates favorable and valuable outcomes based on the immediate postoperative morbidities, even though long-term results have not been investigated. It could be indicated that the piezosurgery in rhinoplasty can be considered as a reliable and safe method and should be taken into account as a part of the surgeon's repertoire for rhinoplasty.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.coms.2020.09.002 | DOI Listing |
Ultrasonics
January 2025
Federal State Budgetary Institution , Technological Institute for Superhard and Novel Carbon Materials of National Research Centre, Kurchatov Institute, 108840 Moscow, Troitsk, Russian Federation.
Microwave surface and Lamb waves in a multilayered piezoelectric "Al-IDT/(AlSc)N/(001)[110] diamond" structure designed as a SAW resonator were studied using both the experimental and modeling methods. In this structure, it is possible to generate Rayleigh, surface horizontal (SH) and Lamb waves simultaneously. The successful excitation of Lamb waves at operating frequencies up to 20 GHz has been obtained.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, Feng Chia University, Taichung 407, Taiwan.
Ligament tears can strongly influence an individual's daily life and ability to engage in physical activities. It is essential to develop artificial scaffolds for ligament repairs in order to effectively restore damaged ligaments. In this experiment, the objective was to evaluate fibrous membranes as scaffolds for ligament repair.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Institute of Nanotechnologies, Electronics and Equipment Engineering, Southern Federal University, 347922 Taganrog, Russia.
One of the challenging problems in the research and development of vibration sensors relates to the formation of Ohmic contacts for the removal of an electrical signal. In some cases, it is proposed to use arrays of carbon nanotubes (CNTs), which can serve as highly elastic electrode materials for vibration sensors. The purpose of this work is to study the effect of a current-collecting layer of CNTs grown over silicon on the properties of a lead zirconate titanate (PZT) film, which is frequently employed in mechanical vibration sensors or energy harvesters.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Microlab, Faculty of Civil Engineering and Geosciences, Delft University of Technology, 2628 CD Delft, The Netherlands.
Structural fatigue can lead to catastrophic failures in various engineering applications and must be properly monitored and effectively managed. This paper provides a state-of-the-art review of recent developments in structural fatigue monitoring using piezoelectric-based sensors. Compared to alternative sensing technologies, piezoelectric sensors offer distinct advantages, including compact size, lightweight design, low cost, flexible formats, and high sensitivity to dynamic loads.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Institute of Semiconductor Technology (IHT), Technische Universität Braunschweig, Hans-Sommer-Straße 66, 38106 Braunschweig, Germany.
A novel piezoresistive cantilever microprobe (PCM) with an integrated electrothermal or piezoelectric actuator has been designed to replace current commercial PCMs, which require external actuators to perform contact-resonance imaging (CRI) of workpieces and avoid unwanted "forest of peaks" observed at large travel speed in the millimeter-per-second range. Initially, a PCM with integrated resistors for electrothermal actuation (ETA) was designed, built, and tested. Here, the ETA can be performed with a piezoresistive Wheatstone bridge, which converts mechanical strain into electrical signals by boron diffusion in order to simplify the production process.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!