Associations between molybdenum exposure and ultrasound measures of fetal growth parameters: A pilot study.

Chemosphere

Department of Ultrasound, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Reproductive Genetics (Ministry of Education), Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China. Electronic address:

Published: April 2021

Previous studies have suggested the association of molybdenum (Mo) exposure with some adverse outcomes. However, limited epidemiological studies have been performed to explore the association between maternal Mo exposure level and fetal growth. This study recruited 220 pregnant women during their second trimester. The mother's urinary Mo concentration was measured by inductively coupled plasma mass spectrometry (ICP-MS). The fetal biometric parameters, including head circumference (HC), biparietal diameter (BPD), femur diaphysis length (FL), and abdominal circumference (AC) were assessed by prenatal ultrasound. Estimated fetal weight (EFW) was evaluated using the formula of Hadlock. Multivariable linear regression models were applied to estimate the relationships between Mo level and fetal biometric parameters, and potential confounders were adjusted. A one-unit increment in natural-logarithm transformed urinary Mo level was significantly associated with reductions in fetal AC of -0.34 cm (95%CI: -0.63, -0.04), and was negatively related to EFW (β = -18.2, 95%CI: -40.5, 4.2). Furthermore, when participants were stratified by copper (Cu) level, the results showed that the magnitude of negative association between Mo and AC (β = -0.55, 95%CI: -1.13, 0.04) was greater in pregnant women with Cu level below median value, comparing with those with Cu level above median value (β = -0.08, 95%CI: -0.57, 0.42), and a similar pattern was found for EFW, although the interaction between Mo and Cu was not significant. Our data suggested an inverse association of maternal urinary Mo level with fetal AC and EFW during the second trimester of pregnancy. These associations might be stronger in pregnant women with relatively lower Cu levels.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2020.128709DOI Listing

Publication Analysis

Top Keywords

level fetal
12
pregnant women
12
molybdenum exposure
8
fetal growth
8
association maternal
8
second trimester
8
fetal biometric
8
biometric parameters
8
urinary level
8
level median
8

Similar Publications

Nonketotic hyperglycinemia (NKH), also known as glycine encephalopathy, is a rare inherited neurometabolic disorder caused by a deficiency in the glycine cleavage enzyme system (GCS), leading to the pathological accumulation of glycine in blood and cerebrospinal fluid (CSF). This case report details a neonate presenting with central apnea, profound hypotonia, and refractory seizures, alongside prenatal findings of polyhydramnios and hiccup-like fetal movements, all strongly suggestive of severe NKH. Diagnostic evaluation confirmed markedly elevated glycine levels in serum and CSF, with a CSF-to-plasma glycine ratio exceeding 0.

View Article and Find Full Text PDF

The term "human fetal and embryological collections" refers to repositories or archives that house remains of human fetuses and embryos. Most of these remains have been obtained without informed consent from the next of kin, thus reflecting a time in history where this may have been acceptable. Previous quantitative studies seeking stakeholder perceptions toward these collections suggest that there is misalignment with the values of society today, and the current guiding frameworks pertaining to these collections.

View Article and Find Full Text PDF

Optimising Luteinising Hormone Levels on Trigger Day for Improved Ovarian Response and Pregnancy Outcomes in Gonadotropin-Releasing Hormone Antagonist Protocols: A Retrospective Cohort Study.

BJOG

January 2025

Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.

Objective: To determine the optimal luteinising hormone (LH) level on the trigger day and its impact on pregnancy outcomes in gonadotropin-releasing hormone (GnRH) antagonist protocols using a data-driven approach.

Design: Retrospective cohort study.

Setting: Third Affiliated Hospital of Guangzhou Medical University.

View Article and Find Full Text PDF

Problem: Although it is still uncertain whether Severe Acute Respiratory Coronavirus (SARS-CoV-2) placental infection and vertical transmission occur, inflammation during early pregnancy can have devastating consequences for gestation itself and the growing fetus. If and how SARS-CoV-2-specific immune cells negatively affect placenta functionality is still unknown.

Method Of Study: We stimulated peripheral blood mononuclear cells (PBMCs) from women of reproductive age with SARS-CoV-2 peptides and cocultured them with trophoblast spheroids (HTR-8/SVneo and JEG-3) to dissect if SARS-CoV-2-activated immune cells can interfere with trophoblast functionality.

View Article and Find Full Text PDF

Purpose: Cartilage repair necessitates adjunct therapies such as cell-based approaches, which commonly use MSCs and chondrocytes but is limited by the formation of fibro-hyaline cartilage. Articular cartilage-derived chondroprogenitors(CPs) offer promise in overcoming this, as they exhibit higher chondrogenic and lower hypertrophic phenotypes. The study aimed to compare the efficacy of various cell types derived from adult and foetal cartilage suspended in platelet-rich plasma(PRP) in repairing chondral defects in an Ex-vivo Osteochondral Unit(OCU) model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!