AI Article Synopsis

  • Ultraviolet (UV) irradiation combined with chlor(am)ination is commonly used in many Chinese cities' secondary water supply systems, but the formation of disinfection by-products (DBPs) in this mixed system is not fully understood.
  • A study explored how various factors, like the ratios of chlorine to chloramine, UV exposure, pH levels, and types of organic matter, impacted DBP formation.
  • Results showed that higher ratios of free chlorine reduced DBP levels, and that water with humic acid produced the most DBPs, while acidic conditions helped mitigate DBP toxicity; the presence of bromine (Br) also led to decreased DBP formation under UV treatment.

Article Abstract

In recent years, ultraviolet (UV) irradiation coupled with chlor(am)ination process is ubiquitous in secondary water supply systems in many cities of China. However, the disinfection by-products (DBPs) formation in a UV-activated mixed chlorine/chloramine system (MCCS) still remains unclear. In this study, the DBPs formation in a UV-activated MCCS was systematically investigated, considering influencing factors including the mass ratios of free chlorine to NHCl, UV irradiation, pH values, NOM types, Br concentration and toxicity of the DBPs. Results indicated that DBPs formation decreased remarkably as mass ratio of free chlorine to NHCl changed from 5:0 to 0:5. The DBPs formation in humic acid (HA)-containing water was the highest, followed by those in fulvic acid (FA) and algal organic matter (AOM). Besides, better control of the DBP-related calculated toxicity can be achieved in acidic conditions regardless of the UV irradiation. Furthermore, in the presence of Br, a significant reduction of DBPs formation could be achieved in a UV-activated MCCS. The findings also demonstrated that DBPs formation in real water can be effectively reduced at high UV fluence in a MCCS.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2020.124373DOI Listing

Publication Analysis

Top Keywords

dbps formation
24
disinfection by-products
8
uv-activated mixed
8
mixed chlorine/chloramine
8
chlorine/chloramine system
8
formation uv-activated
8
uv-activated mccs
8
free chlorine
8
chlorine nhcl
8
formation
7

Similar Publications

Unveiling the role of rubber seals in the generation of decentralized disinfection by-products in chlorinated water distribution systems.

Chemosphere

January 2025

University of Chinese Academy of Sciences, Beijing, 100049, China; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China. Electronic address:

The degradation of rubber seal (RS), particularly ethylene-propylene-diene (EPDM), in the drinking water networks has been confirmed, yet the role of RS as a disinfection by-product (DBP) precursor remains unknown. This study provides explicit proof of the formation of halogenated disinfection by-products (X-DBPs) from RS in chlorinated drinking water within water supply systems. Over time, exposure to chlorinated water ages RS, releasing high levels of organic compounds, which act as DBP precursors.

View Article and Find Full Text PDF

Overlooked risks of photoaging of nitrogenous microplastics with natural organic matter in water: Augmenting the formation of nitrogenous disinfection by-products.

Water Res

December 2024

MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China. Electronic address:

In aqueous environments, microplastics (MPs) undergo photoaging, releasing dissolved organic matter (DOM). Disinfection byproducts (DBPs) formation from natural organic matter (NOM) phototransformation has been reported. However, the impact of NOM on the photoaging of MPs (especially nitrogen-containing MPs) and subsequent nitrogenous DBPs (N-DBPs) formation remains unknown.

View Article and Find Full Text PDF

Transgenerational Reproductive and Developmental Toxicity Induced by N-Nitrosodimethylamine and Its Metabolite Formaldehyde in Drosophila melanogaster.

J Appl Toxicol

January 2025

Laboratorio de Genética y Toxicología Ambiental-Banco de Moscas, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico.

N-Nitrosodimethylamine (NDMA) is a known water disinfection byproduct (DBP) characterized as a potent hepatotoxin, promutagen, and probable human carcinogen; this is because of the metabolites associated with its biotransformation. The metabolism of NDMA produces formaldehyde, another alkylating agent and DBP. Both compounds are generated from natural and anthropogenic sources, but the safety restrictions applied to NDMA do not extend to the uses of formaldehyde.

View Article and Find Full Text PDF

Guarding Drinking Water Safety against Harmful Algal Blooms: Could UV/Cl Treatment Be the Answer?

Environ Sci Technol

January 2025

Environmental Engineering and Science, Department of Chemical and Environmental Engineering (ChEE), University of Cincinnati, Cincinnati, Ohio 45221, United States.

Frequent and severe occurrences of harmful algal blooms increasingly threaten human health by the release of microcystins (MCs). Urgent attention is directed toward managing MCs, as evidenced by rising HAB-related do not drink/do not boil advisories due to unsafe MC levels in drinking water. UV/chlorine treatment, in which UV light is applied simultaneously with chlorine, showed early promise for effectively degrading MC-LR to values below the World Health Organization's guideline limits.

View Article and Find Full Text PDF

Characterizing the precursors of byproducts formed by chlorine and chlorine dioxide disinfection using unknown screening analysis with Orbitrap mass spectrometry.

Sci Total Environ

January 2025

Department of Environmental Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen 40002, Thailand; Research Center for Environmental and Hazardous Substance Management, Khon Kaen University, Khon Kaen 40002, Thailand. Electronic address:

Chlorine (Cl) and chlorine dioxide (ClO) are commonly used to disinfect water but unfavorable interactions with dissolved organic matter (DOM) result in the formation of disinfection byproducts (DBPs). This study investigated the formation of organic DBPs arising from Cl and ClO disinfections under different contact times in two surface waters in Thailand and Suwannee River natural organic matter with/without bromide using unknown screening analysis with Orbitrap mass spectrometry. Many CHOCl-DBPs and CHOBr-DBPs intermediates were rapidly formed during the initial period of contact (5-30 min).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!