In this work, high-resolution mass spectrometry was used to identify the oxidation sites and forms of β-lactoglobulin (β-Lg) induced by hydrogen peroxide with 1.5% concentration, and the influence of oxidation sites on the structure of β-Lg was discussed from the molecular level. Twelve kinds of oxidation products and 36 oxidation sites were identified, including sulfoxidation in sulfur-containing amino acid residue, hydroxylation in aromatic group residue, deamination in amino-containing amino acid etc. The destruction of hydrogen bonds and disulfide bonds in β-Lg caused by oxidation is the main factor causing its structural changes, which were manifested in the decrease of β-sheet component and increase of β-turns and random coil contents, intrinsic fluorescence intensity and surface hydrophobicity. In addition, several peptides as potential oxidative markers were found to be capable of monitoring the degree of oxidation of β-Lg. In short, this work provided insights into structural changes of β-Lg by oxidation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2020.127939 | DOI Listing |
Appl Microbiol Biotechnol
December 2024
Life Sciences and Bioengineering Center, Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA.
Transcriptomics is a powerful approach for functional genomics and systems biology, yet it can also be used for genetic part discovery. Here, we derive constitutive and light-regulated promoters directly from transcriptomics data of the basidiomycete red yeast Xanthophyllomyces dendrorhous CBS 6938 (anamorph Phaffia rhodozyma) and use these promoters with other genetic elements to create a modular synthetic biology parts collection for this organism. X.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
University of Science and Technology of China, Hefei National Research Center for Physical Sciences at Microscale, jinzhai road, hefei, CHINA.
Herein, we first report a photocatalytic OCM using CO2 as a soft oxidant for C2H6 production under mild conditions, where an efficient photocatalyst with unique interface sites is constructed to facilitate CO2 adsorption and activation, while concurrently boosting CH4 dissociation. As a prototype, the Au quantum dots anchored on oxygen-deficient TiO2 nanosheets are fabricated, where the Au-Vo-Ti interface sites for CO2 adsorption and activation are collectively disclosed by in situ Kelvin probe force microscopy, quasi in situ X-ray photoelectron spectroscopy and theoretical calculations. Compared with single metal site, the Au-Vo-Ti interface sites exhibit the lower CO2 adsorption energy and decrease the energy barrier of the *CO2 hydrogenation step from 1.
View Article and Find Full Text PDFJ Nanobiotechnology
December 2024
Key Laboratory of Special Environmental Medicine of Xinjiang, General Hospital of Xinjiang Military Command, No. 359, Youhao North Road, Urumqi, Xinjiang, China.
Objective: This study aims to elucidate the mechanisms by which nanovesicles (NVs) transport curcumin(CUR) across the blood-brain barrier to treat hypothalamic neural damage induced by heat stroke by regulating the expression of poly(c)-binding protein 2 (PCBP2).
Methods: Initially, NVs were prepared from macrophages using a continuous extrusion method. Subsequently, CUR was loaded into NVs using sonication, yielding engineered cell membrane Nanovesicles loaded with curcumin (NVs-CUR), which were characterized and subjected to in vitro and in vivo tracking analysis.
Biochem Genet
December 2024
Department of Cardiovascular Medicine, Shanghai Baoshan Luodian Hospital, No. 88, Yongshun Road, Baoshan District, Shanghai, 201908, China.
Recent studies highlight the crucial role of microRNAs (miRNAs) in coronary artery disease (CAD). This retrospective study investigated the abundance of miR-432-5p in the serum of CAD patients and explored its role. 252 volunteers were included.
View Article and Find Full Text PDFSci Rep
December 2024
Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, 34110, Qatar.
This study aims to modify raw zeolite with metal oxide nanocomposites to remove nickel (Ni) ions from synthetic wastewater. Novel zeolite-doped magnesium oxide (MgO), iron oxide (FeO), and zinc oxide (ZnO) nanocomposites were synthesized by hydrothermal-calcination methods. The novel zeolite-doped metal oxide nanocomposites were used as adsorbents to remove Ni (II) ions from synthetic wastewater.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!