DBP formation and toxicity alteration during UV/chlorine treatment of wastewater and the effects of ammonia and bromide.

Water Res

Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.

Published: January 2021

The UV/chlorine process is efficient for the abatement of micropollutants; yet, the formation of disinfection by-products (DBPs) and the toxicity can be altered during the treatment. This study investigated effluent organic matter characterization, DBP formation and toxicity alteration after the UV/chlorine treatment of wastewater; particularly, typical water matrix components in wastewater, namely, ammonia and bromide, were studied. The raw wastewater contained low levels of ammonia (3 µM) and bromide (0.5 µM). The UV/chlorine treatment efficiently eliminated 90 - 94% of fluorescent components. Compared with chlorination alone, a 20 min UV/chlorine treatment increased the formation of trihalomethanes (THMs), haloacetic acids (HAAs), chloral hydrate (CH), haloacetonitriles (HANs), trichloronitromethane (TCNM) and haloacetamides (HAcAms) by 90 - 508%. In post-chlorination after the UV/chlorine treatment, the formation of CH, HANs, TCNM and HAcAms increased by 77 - 274%, whereas the formation of both THMs and HAAs increased slightly by 11%. Meanwhile, the calculated cytotoxicity and genotoxicity of DBPs increased considerably after the UV/chlorine treatment and in post-chlorination, primarily due to the increased formation of HAAs and nitrogenous DBPs (N-DBPs). However, the acute toxicity of the wastewater to Vibrio fischeri and genotoxicity determined by the umu test decreased by 19% and 76%, respectively, after the 20 min UV/chlorine treatment. An additional 200 µM ammonia decreased the formation of all detected DBPs during the UV/chlorine treatment and 24 h post-chlorination, except that TCNM formation increased by 11% during post-chlorination. The acute toxicity of wastewater spiked with 200 µM ammonia was 32% lower than that of raw wastewater after the UV/chlorine treatment, but the genotoxicity was 58% higher. The addition of 1 mg/L bromide to the UV/chlorine process dramatically increased the formation of brominated DBPs and the overall calculated cytotoxicity and genotoxicity of DBPs. However, the acute toxicity and genotoxicity of the wastewater decreased by 7% and 100%, respectively, when bromide was added to the UV/chlorine treatment. This study illuminated that UV/chlorine treatment can decrease acute and geno- toxicities of wastewater efficiently.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2020.116549DOI Listing

Publication Analysis

Top Keywords

uv/chlorine treatment
44
uv/chlorine
13
treatment
12
bromide uv/chlorine
12
increased formation
12
acute toxicity
12
wastewater
9
formation
9
dbp formation
8
formation toxicity
8

Similar Publications

Performance of electro-oxidation (EO) and UV/electro-oxidation (UV/EO) on atrazine (ATZ) removal was investigated under various operating factors. Because of synergistic effect on ATZ removal, UV/EO was the most effective process, followed by UV/chlorine, EO, UV irradiation, and chlorination, respectively. Although the energy consumption of UV/EO for 90% removal was similar to that of EO, UV/EO removed ATZ 1.

View Article and Find Full Text PDF

Anthropogenic organic compounds, such as pharmaceuticals and personal care products, contaminate water, posing toxicological risks caused by either their parent compounds or transformation products. This study compares ultraviolet (UV)-based advanced oxidation processes (UV/hydrogen peroxide, UV/persulfate, and UV/chlorine) for the abatement of an antihistamine drug epinastine. UV light at 254 nm was irradiated upon solutions containing 10 μM epinastine and 100 μM oxidant.

View Article and Find Full Text PDF

Guarding Drinking Water Safety against Harmful Algal Blooms: Could UV/Cl Treatment Be the Answer?

Environ Sci Technol

January 2025

Environmental Engineering and Science, Department of Chemical and Environmental Engineering (ChEE), University of Cincinnati, Cincinnati, Ohio 45221, United States.

Frequent and severe occurrences of harmful algal blooms increasingly threaten human health by the release of microcystins (MCs). Urgent attention is directed toward managing MCs, as evidenced by rising HAB-related do not drink/do not boil advisories due to unsafe MC levels in drinking water. UV/chlorine treatment, in which UV light is applied simultaneously with chlorine, showed early promise for effectively degrading MC-LR to values below the World Health Organization's guideline limits.

View Article and Find Full Text PDF

This work investigated byproduct formation and genotoxicity and cytotoxicity at four facilities using UV/chlorine advanced oxidation for potable reuse or drinking water treatment. In arguably the most common application of UV/chlorine, treating reverse osmosis permeate for potable reuse, organic byproduct formation was always either not detected or well-below typical drinking water levels. At a groundwater-source drinking water treatment plant, the trihalomethanes and haloacetic acids each increased by up to 12 μg/L through the UV reactor and 40 μg/L during secondary disinfection, but the final concentrations remained low relative to regulatory limits.

View Article and Find Full Text PDF

Wane-and-wax mechanism of nitrogenous disinfection byproducts with constant Cl/N peak under UV/chlorine treatment: Implication for new drinking water disinfection strategy.

Water Res

January 2025

Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China. Electronic address:

Nitrogenous disinfection byproducts (N-DBPs) are notorious for their serious health risks, yet nitrate (NO) mediates N-DBPs generation during UV/chlorine treatment remains unexplored. This study investigated the interaction of chlorine and NO on N-DBPs formation and developed a specific fragment-based screening method using UPLC-QTOF-MS to explore the underlying mechanism. Results showed that the chlorine-to-nitrogen (Cl/NO-N) molar ratio significantly affects dichloroacetonitrile (DCAN) and dichloroacetamide (DCAM) generation, with peak concentrations at a Cl/NO-N molar ratio of around 15.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!