Kaempferol attenuates streptozotocin-induced diabetic nephropathy by downregulating TRAF6 expression: The role of TRAF6 in diabetic nephropathy.

J Ethnopharmacol

Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China; Zhuji Biomedicine Institute, School of Pharmaceutical Sciences, Wenzhou Medical University, Zhuji, Zhejiang, 311800, China. Electronic address:

Published: March 2021

Ethnopharmacological Relevance: Kaempferia rhizome is a famous traditional herbal medical in tropical and subtropical areas. Kaempferol (KPF) is one of the main bioactive compounds in Kaempferia rhizome, with anti-oxidant/anti-inflammatory effects demonstrated in various disease models, including cancers, obesity and diabetes.

Aim Of The Study: Inflammation plays an important role in the pathogenesis of diabetic nephropathy (DN). TRAF6 functions as a signal transducer in toll-like receptor 4 and NF-κB pro-inflammatory signaling pathway. We aimed at investigate whether KPF is able to mitigate inflammatory responses by regulating TRAF6 in DN.

Material And Methods: C57BL/6 mice were injected with streptozotocin to induce type 1 DN. NRK-52E, a tubular epithelial cell line, was used for in vitro analysis. TRAF6 was knockdown using siRNA in vitro and AAV2/2-shRNA in vivo. The anti-DN and inflammatory effects of KPF or knockdown of TRAF6 were evaluated by investigating renal filtration index, pathological changes of kidney tissue. Proinflammatory cytokine levels were detected using ELISA. NF-κB pathway and protein levels of related pathways were detected through Western blot.

Results: KPF significantly reduced renal inflammation, fibrosis, and kidney dysfunction in diabetic mice. These effects were associated with a downregulation of TRAF6 in diabetic mouse kidneys, indicating the potential role of TRAF6. Knockdown of TRAF6 in mice through AAV2-shTRAF6 confirmed the importance of TRAF6 in DN. In vitro, treatment of KPF in NRK-52E cells attenuated high glucose (HG)-induced inflammatory and fibrogenic responses, associated with downregulated TRAF6 expression. The conclusion was further confirmed in NRK-52E cells by knocking down the expression and by overexpression of TRAF6.

Conclusion: Our findings provide direct evidence that TRAF6 mediates diabetes-induced inflammation leading to renal dysfunction. We also show that KPF is a potential therapeutic agent to reduce inflammatory responses in DN. Also, TRAF6 may represent an interesting target to combat DN.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jep.2020.113553DOI Listing

Publication Analysis

Top Keywords

traf6
13
diabetic nephropathy
12
traf6 expression
8
role traf6
8
traf6 diabetic
8
kaempferia rhizome
8
inflammatory responses
8
traf6 knockdown
8
knockdown traf6
8
nrk-52e cells
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!