Expression and antibacterial analysis of galectin-8 and -9 genes in mandarin fish, Siniperca chuatsi.

Fish Shellfish Immunol

State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong Province, 266237, China; School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China. Electronic address:

Published: December 2020

Galectin-8 and galectin-9 belong to tandem repeat-type galectins, and in the present study, these two genes were cloned in mandarin fish Siniperca chuatsi. The open reading frame (ORF) of the mandarin fish galectin-8 and galectin-9 contains 942, and 1008 bp, encoding 313 and 335 amino acids, respectively. As a conserved feature, an N-terminal carbohydrate recognition domain (CRD), and a C-terminal CRD were observed in each of the two galectins in mandarin fish. In healthy fish, galectin-8 and -9 were constitutively expressed in all organs/tissues examined, and their expression can be induced following the stimulation of LPS and poly(I:C). It is obvious that galectin-8 had a higher increase at mRNA level following the stimulation of poly(I:C). It is further demonstrated that mandarin fish galectin-8 inhibited the growth of Flavobacterium columnare and Streptococcus agalactiae, and in addition to the two species of bacteria, galectin-9 inhibited also the growth of Edwardsiella piscicida, which provides the basis for further understanding their antibacterial role in immune response of mandarin fish.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fsi.2020.10.028DOI Listing

Publication Analysis

Top Keywords

mandarin fish
24
fish galectin-8
12
fish siniperca
8
siniperca chuatsi
8
galectin-8 galectin-9
8
inhibited growth
8
fish
7
galectin-8
6
mandarin
6
expression antibacterial
4

Similar Publications

Effects of Different River Crab Polyculture Practices on Bacterial, Fungal and Protist Communities in Pond Water.

Biomolecules

December 2024

Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.

Microorganisms, including bacteria, fungi, and protists, are key drivers in aquatic ecosystems, maintaining ecological balance and normal material circulation, playing vital roles in ecosystem functions and biogeochemical processes. To evaluate the environmental impact of different river crab polyculture practices, we set up two different river crab () polyculture practices: one where river crabs were cultured with mandarin fish (), silver carp (), and freshwater fish stone moroko (), and another where river crabs were cultured just with mandarin fish and silver carp. These two polyculture practices were referred to as PC and MC, respectively.

View Article and Find Full Text PDF

Genome-wide identification, evolution and expression of pax gene family members in mandarin fish (Siniperca chuatsi).

Comp Biochem Physiol Part D Genomics Proteomics

January 2025

Key Laboratory of Conservation and Application in Biodiversity of South China, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China. Electronic address:

The pax gene family is involved in the development process through its extensive effects on cell proliferation, differentiation, and apoptosis. Herein, the whole pax gene family members of mandarin fish (Siniperca chuatsi) were first identified and characterized. By comparing pax gene family members from another 13 representative animals, an expansion of pax gene family members was observed in teleosts.

View Article and Find Full Text PDF

Mandarin fish ranavirus (MRV) is a distinctive member among the genus of the family . The persistently covert infection of MRV was previously observed in a natural outbreak of MRV, but the underlying mechanism remains unclear. Here, we show that mandarin fish peripheral B lymphocytes are implemented as viral reservoirs to maintain the persistent infection.

View Article and Find Full Text PDF

scTRIM44 Positively Regulated Siniperca Chuatsi Rhabdovirus Through RIG-I- and MDA5-Mediated Interferon Signaling.

Viruses

December 2024

Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Key Laboratory of Fishery Drug Development, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China.

Tripartite Motif-Containing 44 (TRIM44) is responsible for cancers, neurodegenerative diseases, and viral infections. However, the role of TRIM44 (scTRIM44) during viral infection remains unclear. In the present study, we analyzed the molecular characteristics of scTRIM44 and its role in infectious spleen and kidney necrosis virus (ISKNV), largemouth bass virus (LMBV), and Siniperca chuatsi rhabdovirus (SCRV) infection.

View Article and Find Full Text PDF

Rapid, sensitive, and visual detection of mandarin fish ranavirus and infectious spleen and kidney necrosis virus using an RPA-CRISPR/Cas12a system.

Front Microbiol

December 2024

School of Marine Sciences, State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, Sun Yat-sen University, Guangzhou, China.

Iridoviruses are large cytoplasmic icosahedral viruses that contain dsDNA. Among them, mandarin fish ranavirus (MRV) and infectious spleen and kidney necrosis virus (ISKNV) are particularly notable due to their high contagiousness and pathogenicity. These viruses pose a significant threat to fish aquaculture, resulting in substantial annual economic losses for the fish farming industry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!