Objective: Detection of epidemics is a critical issue in epidemiology of infectious diseases which enable healthcare system to better control it. This study is devoted to investigating the 5-year trend in influenza and severe acute respiratory infection cases in Iran. The epidemics were also detected using the hidden Markov model (HMM) and Serfling model.
Study Design: In this study, we used SARI data reported in the World Health Organization (WHO) FluNet web-based tool from August 2011 to August 2016.
Methods: SARI data in Iran from August 2011 to August 2016 were used. We applied the HMM and Serfling model for indicating the two epidemic and non-epidemic phases. The registered outbreak activity recorded on the WHO website was used as the gold standard. The coefficient of determination was reported to compare the goodness of fit of the models.
Results: Serfling models modified by 30% and 35% of the data had a sensitivity of 91.67% and 95.83%, while for 15%, 20% and 25% were 70.83%, 79.17% and 83.33%, respectively. Sensitivity of HMM and autoregressive HMM (AHMM) was 66.67% and 92.86%. All fitted models have a specificity of over 96%. The R for HMM and AHMM was calculated 0.73 and 0.85, respectively, showing better fitness of these models, while R was around 50% for different types of Serfling models.
Conclusions: Both modified Serfling and HMM were acceptable models in determining the epidemic points for the detection of weekly SARI. The AHMM had better fitness, higher detection power and more accurate detection of the incidence of epidemics than Serfling model and high sensitivity and specificity. In addition to AHMM, Serfling models with 30% and 35% modification can be used to detect epidemics due to approximately the same accuracy but the simplicity of the calculations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/tbed.13912 | DOI Listing |
Elife
January 2025
State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University & IDG/McGovern Institute for Brain Research, Beijing, China.
Speech comprehension involves the dynamic interplay of multiple cognitive processes, from basic sound perception, to linguistic encoding, and finally to complex semantic-conceptual interpretations. How the brain handles the diverse streams of information processing remains poorly understood. Applying Hidden Markov Modeling to fMRI data obtained during spoken narrative comprehension, we reveal that the whole brain networks predominantly oscillate within a tripartite latent state space.
View Article and Find Full Text PDFLight Sci Appl
January 2025
Spin-Optics laboratory, St. Petersburg State University, St. Petersburg, 198504, Russia.
We introduce a novel neuromorphic network architecture based on a lattice of exciton-polariton condensates, intricately interconnected and energized through nonresonant optical pumping. The network employs a binary framework, where each neuron, facilitated by the spatial coherence of pairwise coupled condensates, performs binary operations. This coherence, emerging from the ballistic propagation of polaritons, ensures efficient, network-wide communication.
View Article and Find Full Text PDFFront Parasitol
January 2024
Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, United States.
RNA-specific nucleotidyltransferases (rNTrs) add nontemplated nucleotides to the 3 end of RNA. Two noncanonical rNTRs that are thought to be poly(A) polymerases (PAPs) have been identified in the mitochondria of trypanosomes - KPAP1 and KPAP2. KPAP1 is the primary polymerase that adds adenines (As) to trypanosome mitochondrial mRNA 3 tails, while KPAP2 is a non-essential putative polymerase whose role in the mitochondria is ambiguous.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Department of Chemistry and Oden Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, Texas 78712, USA.
Inferring underlying microscopic dynamics from low-dimensional experimental signals is a central problem in physics, chemistry, and biology. As a trade-off between molecular complexity and the low-dimensional nature of experimental data, mesoscopic descriptions such as the Markovian master equation are commonly used. The states in such descriptions usually include multiple microscopic states, and the ensuing coarse-grained dynamics are generally non-Markovian.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Single Molecule Analysis Group, Department of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109, United States.
Single-molecule fluorescence resonance energy transfer (smFRET) has emerged as a pivotal technique for probing biomolecular dynamics over time at nanometer scales. Quantitative analyses of smFRET time traces remain challenging due to confounding factors such as low signal-to-noise ratios, photophysical effects such as bleaching and blinking, and the complexity of modeling the underlying biomolecular states and kinetics. The dynamic distance information shaping the smFRET trace powerfully uncovers even transient conformational changes in single biomolecules both at or far from equilibrium, relying on trace idealization to identify specific interconverting states.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!