Pesticides present in water resources can cause adverse health effects even in low concentrations, due to their bio-accumulative character. Therefore, the challenge for drinking water production increases, due to the limitations of conventional water treatment technologies in the removal of small molecular weight dissolved compounds. This work aimed to provide technical and scientific support for the selection of pulverized activated carbon - PACs, granular activated carbon - GACs, and carbon nanotubes - CNT concerning atrazine - ATZ, simazine - SMZ, and diuron - DIU adsorption for application in water treatment plants, considering two forms of application commercial product - CP and analytical standard - SD. These forms of application were tested aiming to verify the influence of the purity of the products used in experiments on the adsorption efficiency. It was possible to verify the adsorption efficiencies were not guided only by the characteristics of the adsorptive materials used, and that the selection should not be carried out only based on the, specific superficial area - BET size and distribution of specific pore volume. The isotherms demonstrated that the parameter Kf associated with the results of the selection experiment can be considered an alternative technical tool of simple application and sufficient for this purpose. Also, the capacity of activated carbons - ACs and nanomaterials - NMs were affected by the application of the compounds, highlighting the importance of using commercial product - CP in scientific research and technical investigations. The pesticides efficiency removal was affected due to the forms of application, SD and CP;The parameters IN and MBI were not decisive in the selection of the activated carbon;The main adsorption mechanism in all the materials was chemical;GAC was the most efficient adsorbent in the removal of the pesticides;An adequate adsorbent selection is crucial for satisfactory removal of pesticides in water.

Download full-text PDF

Source
http://dx.doi.org/10.1080/09593330.2020.1847203DOI Listing

Publication Analysis

Top Keywords

forms application
12
adsorbent selection
8
drinking water
8
pesticides water
8
water treatment
8
activated carbon
8
commercial product
8
water
6
application
6
removal
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!