A solid-phase extraction method combined with deep eutectic solvent-based dispersive liquid-liquid microextraction has been developed for the extraction of three antibiotics in honey samples prior to their determination by ion mobility spectrometry. In this method, first, a multiwall carbon nanotube/urea-formaldehyde nanocomposite was synthesized using co-precipitation polymerization method and then it was used as a sorbent for the analytes extraction from the samples. After that the adsorbed analytes were eluted from the sorbent using a water-miscible organic solvent. The collected elution solvent was mixed with tetrabutylammonium chloride:butanol deep eutectic solvent and the mixture was applied in the following microextraction method. The method provided low limits of detection and quantification in the ranges of 0.32-0.86 and 1.1-2.9 ng/g, respectively. The method had a proper repeatability expressed as relative standard deviation less than or equal to 9.1%. The validated method was successfully performed on different honey samples obtained from different producers.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jssc.202000679DOI Listing

Publication Analysis

Top Keywords

deep eutectic
12
multiwall carbon
8
carbon nanotube/urea-formaldehyde
8
nanotube/urea-formaldehyde nanocomposite
8
solid-phase extraction
8
eutectic solvent-based
8
solvent-based dispersive
8
dispersive liquid-liquid
8
liquid-liquid microextraction
8
honey samples
8

Similar Publications

The oxidation of 5-HMF to HMFCA is an important yet complex process, as it generates high-value chemical intermediates. Achieving this transformation efficiently requires the development of non-precious, highly active catalysts derived from renewable biomass sources. In this work, we introduce UoM-1 (UoM, University of Mazandaran), a novel cobalt-based metal-organic framework (Co-MOF) synthesized using a simple one-step ultrasonic irradiation method.

View Article and Find Full Text PDF

In this study, ultrasound-assisted glycated ovalbumin (G-UOVA) based on natural deep eutectic solvents (NADES) was prepared using response surface optimization. The binding affinity of (-)-gallocatechin gallate (GCG) to native OVA (NOVA), ultrasound treated OVA (UOVA), glycated OVA (GOVA), and G-UOVA followed G-UOVA > GOVA > UOVA > NOVA. The effects of various modifications and GCG binding on the secondary structure, particle size, and thermal stability of NOVA were investigated.

View Article and Find Full Text PDF

Natural deep eutectic solvents (NaDES) were employed for the extraction of bilberry and green tea leaves. This study explored the incorporation of these NaDES extracts into various carrier systems: hydrogels, emulsions, and emulgels stabilized with hydroxyethyl cellulose or xanthan gum. The results demonstrated that, when combined with synthetic UV filters, the NaDES extracts significantly enhanced the SPF and improved the antioxidant properties of the formulation.

View Article and Find Full Text PDF

To address the issues of infectious virus, bacterial secondary infections, skin pigmentation, and scarring caused by monkeypox virus (MPXV), a sprayable hydrogel with versatile functions was developed with comprehensive properties. Based on current research, the bioactive deep eutectic solvent (DES) of rosmarinic acid-proanthocyanidin-glycol (RPG) was designed and synthesized as active agent, and molecular docking was applied to discover its binding to MPXV proteins through H-bonds and van der Waals interactions, and the docking results show the binding energies between RA, PC, Gly and MPXV proteins are -58.7188, -50.

View Article and Find Full Text PDF

Facile green treatment of mixed cellulose ester membranes by deep eutectic solvent to enhance dye removal and determination.

Int J Biol Macromol

December 2024

Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China; Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada. Electronic address:

Synthetic dye production and the consequent generation of dye-rich wastewater are major concerns of water quality in many countries. We developed a sustainable approach with deep eutectic solvent (DES) treatment to enhance the efficiency of mixed cellulose ester (MCE) membrane-based dye removal material. The DES composition and treatment conditions were optimized, and the treated membranes were comprehensively characterized.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!