Controllably activating the bio-reactivity of metal complexes in living systems is challenging but highly desirable because it can minimize off-target bindings and improve spatiotemporal specificity. Herein, we report a new bioorthogonal activation approach by employing Pd(II)-triggered transmetallation reactions to conditionally activate the bio-reactivity of NHC-Au(I)-phenylacetylide complexes (1 a) in vitro and in vivo. A combination of H NMR, LC-MS, DFT calculation and fluorescence screening assays reveals that 1 a displays a reasonable stability against biological thiols, but its phenylacetylide ligand can be efficiently transferred to Pd(II), leading to in situ formation of labile NHC-Au(I) species that is catalytically active inside living cells and zebrafish, and can meanwhile effectively suppress the activity of thioredoxin reductase, potently inhibit the proliferation of cancer cells and efficiently suppress angiogenesis in zebrafish models.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202013366 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!