Background: Detection of chlorophyll metabolites in milk has recently been suggested to be an indicator of a grass-fed diet fed for cattle. Such a means of detection, however, is complicated when the grazing season is over because cattle can be fed fermented silage ingredients, such as alfalfa and corn silage. During fermentation, chlorophyll compounds and other pigments undergo degradation due to the accumulation of lactic acid and the resultant decline in pH.
Results: We monitored degradation of chlorophyll compounds by measuring the fluorescence and absorption spectra of silage extracts. The spectroscopic evidence supports the hypothesis that chlorophylls are converted into fluorescent products, such as pheophytin, and further cleaved into pheophorbide. The degradation starts with dechelation and removal of the magnesium ion to produce pheophytin. Further removal of the phytol chain from pheophytin results in the production of pheophorbide.
Conclusions: The fluorescence intensity of these degradation products is reduced compared to that of the parent molecule. These findings are important in understanding the fluorescent signal in milk when cows consume silage rather than fresh pasture grass. © 2020 Society of Chemical Industry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jsfa.10917 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!