In Vitro Cytotoxicity and Cellular Uptake of Tamoxifen Citrate-Loaded Polymeric Micelles.

AAPS PharmSciTech

Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Helwan University, Cairo, 11790, Egypt.

Published: November 2020

The main intent of this treatise was to encapsulate tamoxifen citrate (TMXC) into polymeric micellar delivery system and evaluate the influence of TMXC-loaded micelles as a promising carrier on the in vitro cytotoxicity and cellular uptake of TMXC in treatment of breast cancer. Different formulae of polymeric micelles loaded with TMXC using mixtures of different Pluronic polymers were fabricated by thin-film hydration method and evaluated for morphology, drug entrapment efficiency, particle size, surface charge, in vitro liberation of TMXC, uptake by cancer cell lines, and cytotoxic effect against breast cancer cell lines such as MCF-7. The optimal TMXC-loaded micelles exhibited nano-sized particles and entrapped about 89.09 ± 4.2% of TMXC. In vitro liberation study revealed an extended TMXC escape of about 70.23 ± 5.9% over a period of 36 h. The optimized TMXC-loaded micelles formula showed enhanced cellular uptake of TMXC by 2.28 folds and showed a significant cytotoxic effect with MCF-7 breast cancer cells compared to TMXC solution. The obtained yield proposed that Pluronic micelles could be a promising potential delivery system for anticancer moieties.

Download full-text PDF

Source
http://dx.doi.org/10.1208/s12249-020-01850-6DOI Listing

Publication Analysis

Top Keywords

cellular uptake
12
tmxc-loaded micelles
12
breast cancer
12
vitro cytotoxicity
8
cytotoxicity cellular
8
polymeric micelles
8
tmxc
8
delivery system
8
micelles promising
8
uptake tmxc
8

Similar Publications

Understanding the molecular mechanisms of abiotic stress responses in plants is instrumental for the development of climate-resilient crops. Key factors in abiotic stress responses, such as the proton- pumping pyrophosphatase (AVP1), have been identified, but their function and regulation remain elusive. Here, we explored the post-translational regulation of AVP1 by the ubiquitin-conjugating enzyme UBC34 and its relevance in the salt stress and phosphate starvation responses of Arabidopsis (Arabidopsis thaliana).

View Article and Find Full Text PDF

Objective: Boron Neutron Capture Therapy (BNCT) is a novel precision radiotherapy. The key to BNCT application lies in the effective targeting and retention of the boron-10 (B) carrier. Among the various compounds studied in clinical settings, 4-boronophenylalanine (BPA) become the most prevalent one currently.

View Article and Find Full Text PDF

Acute myocardial infarction (MI) remains a leading cause of mortality worldwide, with inflammatory and reparative phases playing critical roles in disease progression. Currently, there is a pressing need for imaging techniques to monitor immune cell infiltration and inflammation activity during these phases. We developed a novel probe, Tc-HYNIC-mAb, utilizing a monoclonal antibody that targets the voltage-gated potassium channel 1.

View Article and Find Full Text PDF

Comparison of C-Acetate and F-FDG PET/CT for Immune Infiltration and Prognosis in Hepatocellular Carcinoma.

Cancer Sci

January 2025

Hepatobiliary Surgery Center, Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China.

Immunotherapy has revolutionized cancer treatment, making it a challenge to noninvasively monitor immune infiltration. Metabolic reprogramming in cancers, including hepatocellular carcinoma (HCC), is closely linked to immune status. In this study, we aimed to evaluate the ability of carbon-11 acetate (C-acetate) and fluorine-18 fluorodeoxyglucose (F-FDG) PET/CT findings in predicting overall survival (OS) and immune infiltration in HCC patients.

View Article and Find Full Text PDF

Visualizing lipid nanoparticle trafficking for mRNA vaccine delivery in non-human primates.

Mol Ther

January 2025

Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, MA, USA, 02139; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology; Cambridge, MA, USA, 02139; Department of Chemical Engineering, Massachusetts Institute of Technology; Cambridge, MA, USA, 02139; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University; Cambridge, MA, USA, 02139; Howard Hughes Medical Institute; Chevy Chase, MD, USA, 20815; Department of Materials Science of Engineering; Massachusetts Institute of Technology; Cambridge, MA, USA, 02139. Electronic address:

mRNA delivered using lipid nanoparticles (LNPs) has become an important subunit vaccine modality, but mechanisms of action for mRNA vaccines remain incompletely understood. Here, we synthesized a metal chelator-lipid conjugate enabling positron emission tomography (PET) tracer labeling of LNP/mRNA vaccines for quantitative visualization of vaccine trafficking in live mice and non-human primates (NHPs). Following i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!