Understanding how an adult brain reaches an appropriate size and cell composition from a pool of progenitors that proliferates and differentiates is a key question in Developmental Neurobiology. Not only the control of final size but also, the proper arrangement of cells of different embryonic origins is fundamental in this process. Each neural progenitor has to produce a precise number of sibling cells that establish clones, and all these clones will come together to form the functional adult nervous system. Lineage cell tracing is a complex and challenging process that aims to reconstruct the offspring that arise from a single progenitor cell. This tracing can be achieved through strategies based on genetically modified organisms, using either genetic tracers, transfected viral vectors or DNA constructs, and even single-cell sequencing. Combining different reporter proteins and the use of transgenic mice revolutionized clonal analysis more than a decade ago and now, the availability of novel genome editing tools and single-cell sequencing techniques has vastly improved the capacity of lineage tracing to decipher progenitor potential. This review brings together the strategies used to study cell lineages in the brain and the role they have played in our understanding of the functional clonal relationships among neural cells. In addition, future perspectives regarding the study of cell heterogeneity and the ontogeny of different cell lineages will also be addressed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7966193 | PMC |
http://dx.doi.org/10.1007/s00018-020-03689-3 | DOI Listing |
Nature
January 2025
The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA.
The development of the human neocortex is highly dynamic, involving complex cellular trajectories controlled by gene regulation. Here we collected paired single-nucleus chromatin accessibility and transcriptome data from 38 human neocortical samples encompassing both the prefrontal cortex and the primary visual cortex. These samples span five main developmental stages, ranging from the first trimester to adolescence.
View Article and Find Full Text PDFJ Cell Mol Med
January 2025
Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, China.
Notably, the C-X-C Motif Chemokine Ligand 12/C-X-C Chemokine Receptor Type 4 (CXCL12/CXCR4) signalling pathway's activation is markedly increased in a mouse model of abdominal aortic aneurysms (AAA). Nonetheless, the precise contribution of this pathway to AAA development remains to be elucidated. The AAA mouse model was induced by local incubation with elastase and oral administration of β-aminopropionitrile.
View Article and Find Full Text PDFCancer Res
January 2025
Medical College of Wisconsin, Milwaukee, WI, United States.
Despite adjuvant treatment with endocrine therapies, estrogen receptor-positive (ER+) breast cancers recur in a significant proportion of patients. Recurrences are attributable to clinically undetectable endocrine-tolerant persister cancer cells that retain tumor-forming potential. Therefore, strategies targeting such persister cells may prevent recurrent disease.
View Article and Find Full Text PDFJ Clin Invest
January 2025
Department of Medical Oncology; Department of Pancreato-Biliary Surgery; De, Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
Tumor-initiating cells (TICs) play a key role in cancer progression and immune escape. However, how TICs evade immune elimination remains poorly characterized. Combining single-cell RNA sequencing (scRNA-seq), dual-recombinase-based lineage tracing, and other approaches, we identified a WNT-activated subpopulation of malignant cells that act as TICs in vivo.
View Article and Find Full Text PDFSci Transl Med
January 2025
Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
Idiopathic pulmonary fibrosis (IPF) is a progressive interstitial lung disease in which repetitive epithelial injury and incomplete alveolar repair result in accumulation of profibrotic intermediate/transitional "aberrant" epithelial cell states. The mechanisms leading to the emergence and persistence of aberrant epithelial populations in the distal lung remain incompletely understood. By interrogating single-cell RNA sequencing (scRNA-seq) data from patients with IPF and a mouse model of repeated lung epithelial injury, we identified persistent activation of hypoxia-inducible factor (HIF) signaling in these aberrant epithelial cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!