Purpose: Millions of people suffer from diseases that involve corneal nerve dysfunction, caused by various conditions, including dry eye syndrome, neurotrophic keratopathy, diabetes, herpes simplex, glaucoma, and Alzheimer's disease. The morphology of corneal nerves has been studied extensively. However, corneal nerve function has only been studied in a limited fashion owing to a lack of tools. Here, we present a new system for studying corneal nerve function.
Methods: Optical imaging was performed on the cornea of excised murine globes taken from a model animal expressing a genetically encoded calcium indicator, GCaMP6f, to record calcium transients. A custom perfusion and imaging chamber for ex vivo murine globes was designed to maintain and stabilize the cornea, while allowing the introduction of chemical stimulation during imaging.
Results: Imaging of calcium signals in the ex vivo murine cornea was demonstrated. Strong calcium signals with minimal photobleaching were observed in experiments lasting up to 10 minutes. Concentrated potassium and lidocaine solutions both modulated corneal nerve activity. Similar responses were observed in the same neurons across multiple chemical stimulations, suggesting the feasibility of using chemical stimulations to test the response of the corneal nerves.
Conclusions: Our studies suggest that this tool will be of great use for studying functional changes to corneal nerves in response to disease and ocular procedures. This process will enable preclinical testing of new ocular procedures to minimize damage to corneal innervation and therapies for diminished neural function.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7645214 | PMC |
http://dx.doi.org/10.1167/iovs.61.13.10 | DOI Listing |
J Cyst Fibros
January 2025
Pulmonology Department, Regional University Hospital of Malaga, Department of Medicine and Dermatology, University of Malaga, Biomedical Research Institute of Malaga (IBIMA) - Bionand Platform, Malaga, Spain. Electronic address:
Background: Cystic fibrosis (CF) is caused by variants in a gene that encodes a protein essential for water and ion transport in the epithelial cells of exocrine organs. Given the possible relationship of this protein and conjunctival and corneal epithelium, the aim of this study was to evaluate ophthalmologic alterations in people with CF.
Methods: Forty-five people with CF underwent pulmonary evaluation including inflammatory score (IS).
Exp Eye Res
January 2025
Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, USA. Electronic address:
Radiotherapy is one of the conventional treatments for head and neck malignancies. Despite the implementation of protective measures to minimize the detrimental impact on healthy tissues surrounding the radiation site, radiation keratopathy remains a prevalent complication. We aimed to establish a mouse model of radiation keratopathy to characterize the pathophysiology of the disease and enable future identification of potential treatments.
View Article and Find Full Text PDFSurg Neurol Int
December 2024
Department of Surgery, Baghdad Teaching Hospital, Baghdad, Iraq.
Background: Orbital bullet injuries resulting from high-velocity trauma pose significant clinical challenges due to the potential for severe ocular and systemic complications. This meta-analysis consolidates the existing body of knowledge on direct orbital bullet injuries with respect to clinical outcomes, management strategies, and long-term effects.
Methods: The literature search was conducted by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses, using databases such as PubMed and Scopus.
Regen Biomater
November 2024
Zhejiang Top-Medical Medical Dressing Co. Ltd, Wenzhou, Zhejiang 325025, China.
Decellularization is the process of obtaining acellular tissues with low immunogenic cellular components from animals or plants while maximizing the retention of the native extracellular matrix structure, mechanical integrity and bioactivity. The decellularized tissue obtained through the tissue decellularization technique retains the structure and bioactive components of its native tissue; it not only exhibits comparatively strong mechanical properties, low immunogenicity and good biocompatibility but also stimulates neovascularization at the implantation site and regulates the polarization process of recruited macrophages, thereby promoting the regeneration of damaged tissue. Consequently, many commercial products have been developed as promising therapeutic strategies for the treatment of different tissue defects and lesions, such as wounds, dura, bone and cartilage defects, nerve injuries, myocardial infarction, urethral strictures, corneal blindness and other orthopedic applications.
View Article and Find Full Text PDFOrbit
January 2025
Department of Ophthalmology, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, California, USA.
Purpose: Lagophthalmos from facial nerve palsy is traditionally measured with patients in an upright position and may fail to identify positional variability. This study aims to assess the effects of body position, surgical technique, implant material, and patient demographics on lagophthalmos.
Methods: A multicenter prospective study was performed to evaluate positional changes in paralytic lagophthalmos and the effects of various patient and surgical factors.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!