In recent times, anion transporters have received substantial consideration due to their ability to disrupt the ionic equilibrium across membrane bilayers. While numerous Cl- ion transporters were developed for channelopathies, unfortunately, poor aqueous solubility precluded their bioapplicability. Herein, we demonstrate the development of a multi-stimuli activatable anion transport approach to induce regulated transport of Cl- ions across membranes under specific conditions. The sulfonium-based procarrier was initially inactive, but the transmembrane transport of Cl- ions was activated in the presence of stimuli such as glutathione (GSH), reactive oxygen species (ROS) and light. The release of the hydrophobic anionophore from the aqueous-soluble procarrier under specific conditions leads to the successful transport of Cl- ions. Under physiological conditions, these anion carriers follow an antiport exchange mechanism to transport Cl- ions across lipid bilayers. Such multi-stimuli activatable procarriers have great potential to combat various types of channelopathies, including cancer, cystic fibrosis, kidney stones, myotonia, and others.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d0ob00938e | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!