Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Femtosecond optical pump-probe spectroscopy is employed to elucidate the ultrafast carrier nonradiative relaxation dynamics of bare GaAs and a core-shell GaAs/AlGaAs semiconductor nanowire array. Different from the single nanowire conventionally used for the study of ultrafast dynamics, a simple spin coating and peeling off method was performed to prepare transparent organic films containing a vertical oriented nanowire array for transient absorption measurement. The transient experiment provides the direct observation of carrier thermalization, carrier cooling, thermal dissipation and band-gap energy evolutions along with the carrier relaxations. Carrier thermalization occurs within sub-0.5 ps and proceeds almost independently on the AlGaAs-coating, while the time constants of carrier cooling and thermal dissipation are increased by an order of magnitude due to the AlGaAs-coating effect. The concomitant band-gap evolutions in GaAs and GaAs/AlGaAs include an initial rapid red-shift in thermalization period, followed by a slow blue and/or red shift in carrier cooling, and then by an even slower blue shift in thermal dissipation. The evolution is explained by the competition of band-gap renormalization, plasma screening and band-filling. These findings are significant for understanding the basic physics of carrier scattering, and also for the development of flexible optoelectronic devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d0cp04250a | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!