A minimalistic multicomponent cell mimetic is described consisting of a fibrillar network formed by the self-assembly of a low molecular weight compound (cytoskeleton-like) that is entrapped into a polymersome (membrane-like), namely a jelly-polymersome. A simple imidazole-appended hydrogelator is used in order to obtain a catalytic nanoreactor able to hydrolyze an ester within the compartment in its self-assembled state.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0cc04941gDOI Listing

Publication Analysis

Top Keywords

cell mimetic
8
minimalistic catalytically-active
4
catalytically-active cell
4
mimetic supra-molecular
4
supra-molecular hydrogel
4
hydrogel encapsulated
4
encapsulated polymersome
4
polymersome minimalistic
4
minimalistic multicomponent
4
multicomponent cell
4

Similar Publications

To develop and evaluate graphene oxide/gelatin/alginate scaffolds for advanced wound therapy capable of mimicking the native extracellular matrix (ECM) and bio-stimulating all specific phases of the wound healing process, from inflammation and proliferation to the remodeling of damaged skin tissue in three dimensions. The scaffolds were engineered as interpenetrating polymeric networks by the crosslinking reaction of gelatin in the presence of alginate and characterized by structural, morphological, mechanical, swelling properties, porosity, adhesion to the skin tissue, wettability, and in vitro simultaneous release of the active agents. Biocompatibility of the scaffolds were evaluated in vitro by MTT test on fibroblasts (MRC5 cells) and in vivo using assay.

View Article and Find Full Text PDF

: The proton-coupled amino acid transporter (PAT1) is an intestinal absorptive solute carrier responsible for the oral bioavailability of some GABA-mimetic drug substances such as vigabatrin and gaboxadol. In the present work, we investigate if non-steroidal anti-inflammatory drug substances (NSAIDs) interact with substrate transport via human (h)PAT1. : The transport of substrates via hPAT1 was investigated in Caco-2 cells using radiolabeled substrate uptake and in oocytes injected with , measuring induced currents using the two-electrode voltage clamp technique.

View Article and Find Full Text PDF

Advancing Hydrogel-Based 3D Cell Culture Systems: Histological Image Analysis and AI-Driven Filament Characterization.

Biomedicines

January 2025

Embrapa Genetic Resources and Biotechnology, Laboratory of Nanobiotechnology (LNANO), Brasília 70770-917, DF, Brazil.

Machine learning is used to analyze images by training algorithms on data to recognize patterns and identify objects, with applications in various fields, such as medicine, security, and automation. Meanwhile, histological cross-sections, whether longitudinal or transverse, expose layers of tissues or tissue mimetics, which provide crucial information for microscopic analysis. : This study aimed to employ the Google platform "Teachable Machine" to apply artificial intelligence (AI) in the interpretation of histological cross-section images of hydrogel filaments.

View Article and Find Full Text PDF

Investigating amyloid-β (Aβ) peptides in solution is essential during the initial stages of developing lead compounds that can influence Aβ fibrillation while the peptide is still in a soluble state. The tendency of the Aβ(1-42) peptide to misfold in solution, correlated to the aetiology of Alzheimer's disease (AD), is one of the main hindrances to characterising its aggregation kinetics in a cell-mimetic environment. Moreover, the Aβ(1-42) aggregation triggers the unfolded protein response (UPR) in the endoplasmic reticulum (ER), leading to cellular dysfunction and multiple cell death modalities, exacerbated by reactive oxygen species (ROS), which damage cellular components and trigger inflammation.

View Article and Find Full Text PDF

Apoptosis in Cancer Biology and Therapy.

Annu Rev Pathol

January 2025

Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; email:

Since its inception, the study of apoptosis has been intricately linked to the field of cancer. The term apoptosis was coined more than five decades ago following its identification in both healthy tissues and malignant neoplasms. The subsequent elucidation of its molecular mechanisms has significantly enhanced our understanding of how cancer cells hijack physiological processes to evade cell death.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!