Both experimental results and theoretical models suggest the decisive role of the filler-matrix interfaces on the dielectric, piezoelectric, pyroelectric, and electrocaloric properties of ferroelectric polymer nanocomposites. However, there remains a lack of direct structural evidence to support the so-called interfacial effect in dielectric nanocomposites. Here, a chemical mapping of the interfacial coupling between the nanofiller and the polymer matrix in ferroelectric polymer nanocomposites by combining atomic force microscopy-infrared spectroscopy (AFM-IR) with first-principles calculations and phase-field simulations is provided. The addition of ceramic fillers into a ferroelectric polymer leads to augmentation of the local conformational disorder in the vicinity of the interface, resulting in the local stabilization of the all-trans conformation (i.e., the polar β phase). The formation of highly polar and inhomogeneous interfacial regions, which is further enhanced with a decrease of the filler size, has been identified experimentally and verified by phase-field simulations and density functional theory (DFT) calculations. This work offers unprecedented structural insights into the configurational disorder-induced interfacial effect and will enable rational design and molecular engineering of the filler-matrix interfaces of electroactive polymer nanocomposites to boost their collective properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202005431 | DOI Listing |
Mater Horiz
January 2025
School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China.
Multilayer thin films composed of dielectric BaCaZrTiO (BCZT) and oxygen-deficient BCZT (BCZT-OD) were fabricated on (001)-oriented NSTO substrates using the pulsed laser deposition (PLD) technique. Unlike conventional approaches to energy storage capacitors, which primarily focus on compositional or structural modifications, this study explored the influence of the layer sequence and periodicity. The interface between the NSTO substrate and the BCZT-OD layer forms a Schottky barrier, resulting in electric field redistribution across the sublayers of the BCZT/BCZT-OD//(1P) thin film.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Inorganic Polymers, "Petru Poni" Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41A, 700487 Iasi, Romania.
The locomotion of various organisms relies on the alternated elongation-contraction of their muscles or bodies. Such biomimicry can offer a promising approach to developing soft robotic devices with improved mobility and efficiency. Most strategies to mimic such motions rely on reversible size modifications of some materials upon exposure to external stimuli.
View Article and Find Full Text PDFSoft Matter
December 2024
Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH, 44242, USA.
Electrocaloric effects (ECE) in solid state materials, such as ferroelectric ceramics and ferroelectric polymers, have a great impact in developing cooling systems. Herein, we describe the ECE of a newly synthesized ferroelectric nematic liquid crystal compound at the isotropic-ferroelectric nematic (I-N) phase transition. While the Joule heat completely suppressed the ECE in a DC field, in an AC field with < 1.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
Department of Physics, Nanchang University, Nanchang 330031, China. Electronic address:
Polyvinylidene fluoride (PVDF) materials have been widely investigated as polymer matrix for solid polymer electrolytes (SPEs) due to their high dielectric constant, electroactive effect (piezo-, pyro-, and ferroelectricity), and excellent thermal stability. However, the poor interface compatibility caused by highly reactive residual solvents and unsatisfactory ionic conductivity owing to sluggish Li transport kinetics are principal bottlenecks impeding the further development of PVDF-based electrolytes. Herein, we design a PVDF-based electrolytes with the assistance of hydrophilic-amorphous silica (HA-SiO).
View Article and Find Full Text PDFPNAS Nexus
December 2024
Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
Ferroelectric nematic (N) liquid crystals present a compelling platform for exploring topological defects in polar fields, while their structural properties can be significantly altered by ionic doping. In this study, we demonstrate that doping the ferroelectric nematic material RM734 with cationic polymers enables the formation of polymeric micelles that connect pairs of half-integer topological defects. Polarizing optical microscopy reveals that these string defects exhibit butterfly textures, featured with a 2D polarization field divided by Néel-type kink walls into domains exhibiting either uniform polarization or negative splay and bend deformations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!