Background: Mangoes are tropical fruits appreciated worldwide but are extremely perishable, being susceptible to decay, pest infestation and fungal diseases. Using the flavorful and highly valued 'Manila' cultivar, we examined the effect of second-generation chitosan coatings on shelf-life, phenolic compound variation, phytohormones, pest infestation by fruit flies (Anastrepha obliqua) and anthracnose disease caused by the fungus Colletotrichum gloeosporioides.
Results: We observed almost total elimination of A. obliqua eggs with 10 and 20 g L chitosan in diluted acetic acid and a five- to sixfold reduction in anthracnose damage. Treatment with 20 g L chitosan also extended the shelf-life. External (skin) and internal (pulp) discoloration processes were delayed. Fruit firmness was higher when compared with control and acetic acid treatments, and total soluble solids were lower in chitosan-treated fruit. Targeted and non-targeted metabolomics analyses on chitosan-coated fruit identified some phenolic compounds related to the tannin pathway. In addition, abscisic acid and jasmonic acid in the peel were downregulated in chitosan-coated mango peels. Both phytohormones and phenolic content may explain the reduced susceptibility of mangoes to anthracnose development and A. obliqua egg eclosion or larval development.
Conclusions: We conclude that chitosan coatings represent an effective postharvest treatment that significantly reduces anthracnose disease, inhibits A. obliqua egg eclosion and significantly extends 'Manila' mango shelf-life, a key factor currently inhibiting large-scale commercialization of this valuable fruit. © 2020 Society of Chemical Industry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jsfa.10903 | DOI Listing |
Sci Rep
January 2025
Department of Food Hygiene, Science and Research Branch, Islamic Azad University, Tehran, Iran.
Smart packaging, also known as intelligent packaging, is responsive to external stimuli, moisture, light, oxygen, heat, pH, and bacterial growth. In this study, polyvinyl alcohol/nanochitosan/phycocyanin nanocomposite (PVA/NCH/PC-NC) for fish fillets of Oncorhynchus mykiss rainbow trout coating was prepared. Five treatments were prepared over a period of 14 days (0, 1, 7 and 14 days) under treatments of T: fish coated with PVA/NCH-NC without PC; T, T T and T fish coated with PVA/NCH/PC-NC (0.
View Article and Find Full Text PDFCurr Microbiol
January 2025
Department of Clinical Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran.
Bovine mastitis is the most widespread disease that causes financial loss in the dairy industry. Staphylococcus aureus is a well-researched multidrug-resistant opportunistic bacterium that is frequently linked to subclinical mastitis and causes significant economic losses. A further problem in the management of S.
View Article and Find Full Text PDFAm J Sports Med
January 2025
Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu, P.R. China.
Background: For patients with osteoporosis and rotator cuff tears, there is still no consensus on current treatment methods. The material, structure, and number of anchors have important effects on the repair outcome.
Purpose: To investigate the use of chitosan quaternary ammonium salt-coated nickel-titanium memory alloy (NTMA) anchors to treat rotator cuff injury in shoulders with osteoporosis in a rabbit osteoporosis model.
Sci Rep
January 2025
Nutrition Departement, Faculty of Para-Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
This study investigated the antioxidant and antimicrobial properties, as well as the volatile compounds, of Lactobacillus bulgaricus (L. bulgaricus) postbiotics (at concentration of 150 and 300 mg/L) and their combination with chitosan coatings (0.5% and 1%) on sausage quality (with 100 ppm nitrite) during 40 days of cold storage.
View Article and Find Full Text PDFNat Commun
January 2025
Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Hubei Provincial Engineering Research Center of Emerging Functional Coating Materials, School of Resource and Environmental Sciences, Wuhan University, Wuhan, 430079, China.
Achieving a synergy of biocompatibility and extreme environmental adaptability with excellent mechanical property remains challenging in the development of synthetic materials. Herein, a "bottom-up" solution-interface-induced self-assembly strategy is adopted to develop a compressible, anti-fatigue, extreme environment adaptable, biocompatible, and recyclable organohydrogel composed of chitosan-lignosulfonate-gelatin by constructing noncovalent bonded conjoined network. The ethylene glycol/water solvent induced lignosulfonate nanoparticles function as bridge in chitosan/gelation network, forming multiple interfacial interactions that can effectively dissipate energy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!