SAMPL7: Host-guest binding prediction by molecular dynamics and quantum mechanics.

J Comput Aided Mol Des

Department of Chemistry, Michigan State University, East Lansing, MI, 48864, USA.

Published: January 2021

Statistical Assessment of Modeling of Proteins and Ligands (SAMPL) challenges provide routes to compare chemical quantities determined using computational chemistry approaches to experimental measurements that are shared after the competition. For this effort, several computational methods have been used to calculate the binding energies of Octa Acid (OA) and exo-Octa Acid (exoOA) host-guest systems for SAMPL7. The initial poses for molecular dynamics (MD) were generated by molecular docking. Binding free energy calculations were performed using molecular mechanics combined with Poisson-Boltzmann or generalized Born surface area solvation (MMPBSA/MMGBSA) approaches. The factors that affect the utility of the MMPBSA/MMGBSA approaches including solvation, partial charge, and solute entropy models were also analyzed. In addition to MD calculations, quantum mechanics (QM) calculations were performed using several different density functional theory (DFT) approaches. From SAMPL6 results, B3PW91-D3 was found to overestimate binding energies though it was effective for geometry optimizations, so it was considered for the DFT geometry optimizations in the current study, with single-point energy calculations carried out with B2PLYP-D3 with double-, triple-, and quadruple-ζ level basis sets. Accounting for dispersion effects, and solvation models was deemed essential for the predictions. MMGBSA and MMPBSA correlated better to experiment when used in conjunction with an empirical/linear correction.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10822-020-00357-3DOI Listing

Publication Analysis

Top Keywords

molecular dynamics
8
quantum mechanics
8
binding energies
8
energy calculations
8
calculations performed
8
mmpbsa/mmgbsa approaches
8
geometry optimizations
8
sampl7 host-guest
4
binding
4
host-guest binding
4

Similar Publications

H, N, C backbone resonance assignment of human Alkbh7.

Biomol NMR Assign

January 2025

Department of Chemistry, Iowa State University, Hach Hall, 2438 Pammel Drive, Ames, IA, 50011, USA.

The Alkbh7 protein, a member of the Alkylation B (AlkB) family of dioxygenases, plays a crucial role in epigenetic regulation of cellular metabolism. This paper focuses on the NMR backbone resonance assignment of Alkbh7, a fundamental step in understanding its three-dimensional structure and dynamic behavior at the atomic level. Herein, we report the backbone H, N, C chemical shift assignment of the full-length human Alkbh7.

View Article and Find Full Text PDF

Passion fruit woodiness disease (PWD), caused by cowpea aphid-borne mosaic virus (CABMV), severely damages leaves and fruits, compromising passion fruit production. The dynamics of this infection in Passiflora spp. are still poorly understood.

View Article and Find Full Text PDF

Since the onset of the pandemic, many SARS-CoV-2 variants have emerged, exhibiting substantial evolution in the virus' spike protein, the main target of neutralizing antibodies. A plausible hypothesis proposes that the virus evolves to evade antibody-mediated neutralization (vaccine- or infection-induced) to maximize its ability to infect an immunologically experienced population. Because viral infection induces neutralizing antibodies, viral evolution may thus navigate on a dynamic immune landscape that is shaped by local infection history.

View Article and Find Full Text PDF

γ-Glutamyl carboxylase (GGCX) is the sole identified enzyme that uses vitamin K (VK) as a cofactor in humans. This protein catalyses the oxidation of VK hydroquinone to convert specific glutamate residues to γ-carboxyglutamate residues in VK-dependent proteins (VDPs), which are involved in various essential biological processes and diseases. However, the working mechanism of GGCX remains unclear.

View Article and Find Full Text PDF

Pivotal roles of Plasmodium falciparum lysophospholipid acyltransferase 1 in cell cycle progression and cytostome internalization.

Commun Biol

January 2025

Department of Cellular Architecture Studies, Division of Shionogi Global Infectious Diseases Division, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan.

The rapid intraerythrocytic replication of Plasmodium falciparum, a deadly species of malaria parasite, requires a quick but constant supply of phospholipids to support marked cell membrane expansion. In the malarial parasite, many enzymes functioning in phospholipid synthesis pathway have not been identified or characterized. Here, we identify P.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!