Airway stents are used to manage central airway obstructions by restoring airway patency. Current manufactured stents are limited in shape and size, which pose issues in stent fenestrations needed to be manually created to allow collateral ventilation to airway branches. The precise location to place these fenestrations can be difficult to predict based on 2-dimensional computed tomography images. Inspiratory computed tomography scans were obtained from 3 patients and analysed using 3D-Slicer™, Blender™ and AutoDesk® Meshmixer™ programmes to obtain working 3D-airway models, which were 3D printed. Stent customizations were made based on 3D-model dimensions, and fenestrations into the stent were cut. The modified stents were then inserted as per usual technique. Two patients reported improved airway performance; however, stents were later removed due to symptoms related to in-stent sputum retention. In a third patient, the stent was removed a few weeks later due to the persistence of fistula leakage. The use of a 3D-printed personalized airway model allowed for more precise stent customization, optimizing stent fit and allowing for cross-ventilation of branching airways. We determine that an airway model is a beneficial tool for stent optimization but does not prevent the development of some stent-related complications such as airway secretions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/icvts/ivaa206 | DOI Listing |
PLoS One
January 2025
Research Service and Pulmonary Section Medical Service, Veterans Affairs Ann Arbor Health System, Ann Arbor, Michigan, United States of America.
Deployment-related constrictive bronchiolitis (DRCB) has emerged as a health concern in military personnel returning from Southwest Asia. Exposure to smoke from a fire at the Al-Mishraq sulfur enrichment facility and/or burn pits was reported by a subset of Veterans diagnosed with this disorder. DRCB is characterized by thickening and fibrosis of small airways (SA) in the lung, but whether these are related to toxin inhalation remains uncertain.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, USA.
Oxygen controls most metazoan metabolism, yet in mammals, tissue O levels vary widely. While extensive research has explored cellular responses to hypoxia, understanding how cells respond to physiologically high O levels remains uncertain. To address this problem, we investigated respiratory epithelia as their contact with air exposes them to some of the highest O levels in the body.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Computer Science, University College London, London, United Kingdom.
Complex biological systems undergo sudden transitions in their state, which are often preceded by a critical slowing down of dynamics. This results in longer recovery times as systems approach transitions, quantified as an increase in measures such as the autocorrelation and variance. In this study, we analysed paediatric patients in intensive care for whom mechanical ventilation was discontinued through removal of the endotracheal tube (extubation).
View Article and Find Full Text PDFAnesth Analg
January 2025
From the Department of Anesthesiology, University of Colorado School of Medicine, Aurora, Colorado.
This systematic review describes the available clinical practice guidelines (CPGs) for the anesthetic management of trauma and appraises the accessibility and quality of these resources. This review was conducted according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. A search was conducted across 8 databases (MEDLINE, Embase, Web of Science, CABI Digital Library, Global Index Medicus, SciELO, Google Scholar, and National Institute for Health and Care Excellence) for guidelines from 2010 to 2023.
View Article and Find Full Text PDFActa Paediatr
January 2025
Department of Neonatology, University Children's Hospital of Tuebingen, Tuebingen, Germany.
Aim: Face masks and binasal prongs are commonly used interfaces for applying continuous positive airway pressure (CPAP) in neonatology. We aimed to assess CPAP stability in a randomised controlled in vitro study.
Methods: In a simulated resuscitation scenario of a 1000-g preterm infant with respiratory distress, 20 operators (10 with/without neonatology experience) aimed to maintain a CPAP of 5 cmHO as precisely as possible using face masks or binasal prongs in random order.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!