AI Article Synopsis

  • Maintaining cerebral blood flow (CBF) during cardiac surgery with cardiopulmonary bypass (CPB) is critical to avoid neurological injuries like stroke and cognitive impairment.
  • This study introduces a new hybrid optical neuromonitor that continuously measures CBF and metabolic changes using broadband near-infrared spectroscopy and diffuse correlation spectroscopy in cardiac surgery patients.
  • The results showed that significant hypoperfusion events affected CBF and metabolism, with decreases occurring after drops in blood pressure, highlighting the potential of optical neuromonitoring for improving patient outcomes.

Article Abstract

During cardiac surgery with cardiopulmonary bypass (CPB), adequate maintenance of cerebral blood flow (CBF) is vital in preventing postoperative neurological injury - i.e. stroke, delirium, cognitive impairment. Reductions in CBF large enough to impact cerebral energy metabolism can lead to tissue damage and subsequent brain injury. Current methods for neuromonitoring during surgery are limited. This study presents the clinical translation of a hybrid optical neuromonitor for continuous intraoperative monitoring of cerebral perfusion and metabolism in ten patients undergoing non-emergent cardiac surgery with non-pulsatile CPB. The optical system combines broadband near-infrared spectroscopy (B-NIRS) to measure changes in the oxidation state of cytochrome c oxidase (oxCCO) - a direct marker of cellular energy metabolism - and diffuse correlation spectroscopy (DCS) to provide an index of cerebral blood flow (CBFi). As the heart was arrested and the CPB-pump started, increases in CBFi (88.5 ± 125.7%) and significant decreases in oxCCO (-0.5 ± 0.2 µM) were observed; no changes were noted during transitions off CPB. Fifteen hypoperfusion events, defined as large and sustained reductions in CPB-pump flow rate, were identified across all patients and resulted in significant decreases in perfusion and metabolism when mean arterial pressure dropped to 30 mmHg or below. The maximum reduction in cerebral blood flow preceded the corresponding metabolic reduction by 18.2 ± 15.0 s. Optical neuromonitoring provides a safe and non-invasive approach for assessing intraoperative perfusion and metabolism and has potential in guiding patient management to prevent adverse clinical outcomes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7587277PMC
http://dx.doi.org/10.1364/BOE.404101DOI Listing

Publication Analysis

Top Keywords

perfusion metabolism
16
cardiac surgery
12
cerebral blood
12
blood flow
12
monitoring cerebral
8
cerebral perfusion
8
surgery cardiopulmonary
8
cardiopulmonary bypass
8
energy metabolism
8
cerebral
6

Similar Publications

Introduction: Graft optimization is a necessity in order to develop uterus transplantation from brain-dead donors, as a complement to living donors, as these grafts are rare and the last organs retrieved in multiple organ donation. The aim of this study was to assess the feasibility and interest of hypothermic machine perfusion (HMP) in uterus transplantation using a porcine model; secondary outcomes were the evaluation of the graft's tolerance to a prolonged cold ischaemia time and to find new biomarkers of uterus viability.

Material And Methods: Fifteen uterus allotransplantations were performed in a porcine model, after 18 h of cold ischaemia, divided in three groups: Static cold storage in a HTK solution, HMP (with the VitaSmart (™) machine Bridge to Life Ltd.

View Article and Find Full Text PDF

Semaphorin-4D signaling in recruiting dental stem cells for vascular stabilization.

Stem Cell Res Ther

January 2025

Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, Prince Philip Dental Hospital, The University of Hong Kong, 34 Hospital Road, Sai Ying Pun, Hong Kong, Hong Kong SAR.

Background: Achieving a stable vasculature is crucial for tissue regeneration. Endothelial cells initiate vascular morphogenesis, followed by mural cells that stabilize new vessels. This study investigated the in vivo effects of Sema4D-Plexin-B1 signaling on stem cells from human exfoliated deciduous teeth (SHED)-supported angiogenesis, focusing on its mechanism in PDGF-BB secretion.

View Article and Find Full Text PDF

[Analysis of outcomes in adult deceased donor dual kidney transplantation].

Zhonghua Yi Xue Za Zhi

February 2025

Department of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 510030, China.

To investigate the efficacy of dual kidney transplantation (DKT) from adult donors. Clinical data of adult DKT donors and recipients in the Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology from March 2015 to June 2024 were retrospectively analyzed. The patients were followed up until September 2024.

View Article and Find Full Text PDF

Association between intraoperative fluid management and postoperative outcomes in living kidney donors: a retrospective cohort study.

Sci Rep

January 2025

Department of Anesthesiology and Pain Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81, Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea.

Optimal fluid strategy for laparoscopic donor nephrectomy (LDN) remains unclear. LDN has been a domain for liberal fluid management to ensure graft perfusion, but this can result in adverse outcomes due to fluid overload. We compared postoperative outcome of living kidney donors according to the intraoperative fluid management.

View Article and Find Full Text PDF

Cerebral perfusion correlates with amyloid deposition in patients with mild cognitive impairment due to Alzheimer's disease.

J Prev Alzheimers Dis

February 2025

Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China, 154 Anshan Road Tianjin 300052, PR China; Department of Neurology, Tianjin Medical University General Hospital Airport Site, Tianjin 300052, PR China. Electronic address:

Background: Changes in cerebral blood flow (CBF) may contribute to the initial stages of the pathophysiological process in patients with Alzheimer's disease (AD). Hypoperfusion has been observed in several brain regions in patients with mild cognitive impairment (MCI). However, the clinical significance of CBF changes in the early stages of AD is currently unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!