Benign bone tumors are surgically treated by curettage and by filling the defect using bone grafts or bone substitutes, such as hydroxyapatite crystals and tricalcium phosphate. The tricalcium phosphate mixed with hydroxyapatite, although fragile, is a good alternative with good integration. Fifteen patients with benign bone lesions were randomized in two groups surgically treated by curettage and filling of the bone defect using allograft (7 cases) or a mixture of 35% tricalcium phosphate, with 60-85% pore volume, and 65% hydroxyapatite (8 cases). After the surgery, all patients were followed up every 3 weeks until 6 months, and then at 2 months interval until one year for the clinical and radiological assessment. The average age was 35.4 years (from 18 to 54) for the allograft group and 41 years (from 22 to 58) for the patients treated with bone substitute. Eight patients were male and seven female, with relatively equal distribution between both groups. The average bone defect was relatively equal: 14 cc (4-25 cc) for the allograft group and 15.1 cc (4-33 cc) for the ceramic group (P>0.1). During the follow-up, all the lesions gradually disappeared after 12 months, with a time of healing of 18.8 weeks (15-24 weeks) for the allograft group and 20.37 weeks (15-28) for the bone substitute group. There were no significant differences regarding the clinical status and the radiological assessment after 12 months. No patient required extra pain medication after 2 weeks. No complications have been recorded. The surgical treatment of small and medium sized lytic benign tumors has good results with both types of graft that were studied. Using tricalcium phosphate mixed with hydroxyapatite as bone substitute represents a good and low cost alternative, but it is a relatively fragile material with a slower time to integrate compared to the allograft.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7604753 | PMC |
http://dx.doi.org/10.3892/etm.2020.9345 | DOI Listing |
Acta Chir Orthop Traumatol Cech
January 2025
Ortopedická klinika, Fakultní nemocnice Hradec Králové.
Purpose Of The Study: The preclinical study aimed to compare the healing of segmental bone defects treated with biodegradable hyaluronic acid and tricalcium phosphate-based hydrogel with the established autologous spongioplasty. Another aim was to evaluate the hydrogel as a scaffold for osteoinductive growth factor of bone morphogenetic protein-2 (BMP-2) and stem cells.
Material And Methods: The study was conducted in an in vivo animal model.
Adv Healthc Mater
January 2025
State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
Immune-mediated bone regeneration driven by bone biomaterials offers a therapeutic strategy for repairing bone defects. Among 2D nanomaterials, TiCT MXenes have garnered substantial attention for their potential in tissue regeneration. This investigation concentrates on the role of MXene nanocomposites in modulating the immune microenvironment within bone defects to facilitate bone tissue restoration.
View Article and Find Full Text PDFMater Today Bio
February 2025
Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul, 03722, Republic of Korea.
Spinal fusion surgery remains a significant challenge due to limitations in current bone graft materials, particularly in terms of bioactivity, integration, and safety. This study presents an innovative approach using an injectable hydroxyapatite/β-tricalcium phosphate (HA/β-TCP) hydrogel combined with stromal vascular fraction (SVF) and low-dose recombinant human BMP-2 (rhBMP-2) to enhance osteodifferentiation and angiogenesis. Through a series of in vitro studies and preclinical models involving rats and minipigs, we demonstrated that the hydrogel system enables the sustained release of rhBMP-2, resulting in significantly improved bone density and integration, alongside reduced inflammatory responses.
View Article and Find Full Text PDFJ Prosthodont Res
January 2025
Department of Orthodontics, Osaka Dental University, Hirakata, Japan.
Purpose: To perform vertical bone augmentation on rat parietal bone by coating the inner surface of dense polytetrafluoroethylene (d-PTFE) domes with hydroxyapatite (HA) using Erbium Yttrium Aluminum Garnet (Er:YAG) pulsed laser deposition in a rat model.
Methods: The d-PTFE plate surface, α-tricalcium phosphate (α-TCP) coating, and HA coating were measured using scanning electron microscopy and X-ray diffraction to confirm the replacement of α-TCP with HA via high-pressure steam sterilization. The dome was glued to the center of the rat parietal bone and closed with periosteal and epithelial sutures.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!