Background: Malignant glioma is a fatal brain cancer. Accumulated evidence has demonstrated that exosomes can cross the blood-brain barrier (BBB), suggesting their potential use as drug delivery vehicles to glioma. Therefore, various loading methods of anticancer agents into exosomes have been developed. However, the loading efficiency of anticancer drugs, such as doxorubicin (DOX) and paclitaxel (PTX), into exosomes is relatively low, thus challenging to improve the drug delivery efficiency to glioma cells (GMs) via exosomes.
Methods: To improve the loading efficiency of doxorubicin into exosomes, a microfluidic device (Exo-Load) was developed. Next, to increase the exosomal delivery of doxorubicin to GMs, autologous exosomes were used for its loading via Exo-Load. Briefly, exosomes from SF7761 stem cells-like- and U251-GMs were isolated and characterized by nano-tracking analysis (NTA), transmission electron microscopy (TEM), and immunogold EM. Finally, doxorubicin was successfully loaded into exosomes with saponin by Exo-Load, and the uptake and functionality of doxorubicin-loaded exosomes for parent GMs were evaluated.
Results: The loading efficiency of DOX into SF7761 stem cells-like- and U251-GMs-derived-exosomes were 19.7% and 7.86% via Exo-Load at the injection flow rate of 50 µL/min, respectively. Interestingly, the loading efficiency of DOX into U251 GMs-derived exosomes was significantly improved to 31.98% by a sigmoid type of Exo-Load at the injection flow rate of 12.5 µL/min. Importantly, DOX-loaded GMs-derived exosomes via Exo-Load inhibited parent GMs' proliferation more than heterologous GMs, supporting exosomes' homing effect.
Conclusion: This study revealed that DOX and PTX could be loaded in exosomes via Exo-Load, demonstrating that Exo-Load could be a potential drug-loading device into exosomes with further optimization. This study also demonstrated that the delivery of DOX to SF7761 GMs via their daughter exosomes was much more efficient rather than U251 GMs-derived exosomes, supporting that the use of autologous exosomes could be better for glioma drug targeting.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7605152 | PMC |
http://dx.doi.org/10.2147/IJN.S263956 | DOI Listing |
J Occup Health
January 2025
Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.
Objectives: Natural fibrous mineral, asbestos, has been useful in industry for many centuries. In the 1960's, epidemiology had recognized the association between asbestos exposure and mesothelioma and the IARC designated all kinds of asbestos as Group 1 in 1987. However, various scientific enigmas remained regarding the molecular mechanisms of asbestos-induced mesothelial carcinogenesis.
View Article and Find Full Text PDFNPJ Vaccines
January 2025
Jiangzhong Cancer Research Center, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China.
Tumor-derived exosomes (TDEs) mediate oncogenic communication, which modifies target cells to reinforce a tumor-promoting microenvironment. TDEs support cancer progression by suppressing anti-tumor immune responses, promoting metastasis, and conferring drug resistance. Thus, targeting TDEs could improve the efficacy of anti-cancer treatments and control metastasis.
View Article and Find Full Text PDFJ Control Release
January 2025
Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Shanghai 200433, China. Electronic address:
The anti-inflammatory role of miR-23b-3p (miR-23b) is known in autoimmune diseases like multiple sclerosis, systemic lupus erythematosus, and rheumatoid arthritis. However, its role in sepsis-related acute lung injury (ALI) and its effect on macrophages in ALI remain unexplored. This investigation aimed to evaluate miR-23b's therapeutic potential in macrophages in the context of ALI.
View Article and Find Full Text PDFIntroduction: Esophageal squamous cell carcinoma (ESCC) has one of the poorest cancer prognosis rates; there is an urgent need to develop new drug therapies and biomarkers. CD63, a tetraspanin protein and well-known exosomal marker, is implicated in cancer progression; however, the significance of CD63 expression in ESCC remains unclear. Herein, we report the significance of CD63 expression by analyzing ESCC patient samples and ESCC cell lines.
View Article and Find Full Text PDFInt J Surg
January 2025
Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
Background: Exosomes, which carry bioactive RNAs, proteins, lipids, and metabolites, have emerged as novel diagnostic markers and therapeutic agents for heart failure (HF). This study aims to elucidate the trends, key contributors, and research hotspots of exosomes in HF.
Methods: We collected publications related to exosomes in HF from the Web of Science Core Collection.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!