Optimization of membrane dispersion ethanol precipitation process with a set of temperature control improved equipment.

Sci Rep

Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.

Published: November 2020

Ethanol precipitation is an important separation and purification process in the traditional Chinese medicines (TCMs) industry. In the present study, a membrane dispersion micromixer was applied to achieve good mixing for the ethanol precipitation process of Astragali radix concentrate. New experimental apparatus was set up to rapidly lower the temperature of ethanol solution before mixing with the concentrate. Ethanol precipitation process was optimized according to Quality by design concept. To identify critical material attributes (CMAs), ten batches of Astragali radix were used to prepare concentrates. Calycosin-7-O-β-D-glucoside content, the sucrose content, and the electrical conductivity were found to be CMAs after the correlation analysis and stepwise regression modelling. Definitive screening design was used to investigate the relationships among critical process parameters, CMAs, and process critical quality attributes (CQAs). Quadratic models were developed and design space was calculated according to the probability of attaining process CQA standards. A material quality control strategy was proposed. High quality and low quality Astragali radix concentrates can be discriminated by the inequalities. Low quality Astragali radix concentrates should not be released for ethanol precipitation process directly. Verification experiment results indicated accurate models and reliable design space. The temperature control method and control strategy are promising for ethanol precipitation process of other TCMs or foods.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7643161PMC
http://dx.doi.org/10.1038/s41598-020-75900-1DOI Listing

Publication Analysis

Top Keywords

ethanol precipitation
24
precipitation process
20
astragali radix
16
process
9
membrane dispersion
8
temperature control
8
design space
8
control strategy
8
low quality
8
quality astragali
8

Similar Publications

Influence of deep-eutectic and organic solvents on the recovery, molecular mass, and functional properties of dextran: Application using dextran film.

Int J Biol Macromol

December 2024

Bioprocess Engineering Laboratory, School of Chemical and Biotechnology, Centre for Bioenergy, SASTRA Deemed to be University, India. Electronic address:

The novelty of this study is to examine the impact of different solvent systems, namely organic and deep eutectic solvents, on recovery yield, antioxidant activity, poly-dispersity index, and functional properties of microbial dextran. The optimized conditions for maximum dextran recovery were obtained using organic solvent found to be: supernatant: organic solvent - 1:4 v/v; organic solvents: ethanol, isopropanol, and acetone; temperature: 0 °C; and time: 16 h. Though a similar structure was obtained for dextran recovered using various solvents, the degree of branching varied, with DES-precipitated dextran having the highest branching of 20 % α-(1,3) linkages.

View Article and Find Full Text PDF

Multi-omics analysis reveals the pre-protective mechanism of Dendrobium flexicaule polysaccharide against alcohol-induced gastric mucosal injury.

Int J Biol Macromol

December 2024

College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; Hubei Shizhen Laboratory, Wuhan 430065, China. Electronic address:

Dendrobium flexicaule (DF) is an endemic plant primarily found in the mountains of central China with important medicinal and edible values. In traditional Chinese medicine, DF has the effects of nourishing stomach and "Yin", and clearing heat. At present, no studies have explored the mechanisms by which Dendrobium flexicaule polysaccharides (DFP) exert pre-protect effects against alcohol-induced gastric mucosal injury.

View Article and Find Full Text PDF

Development of Single-Walled Carbon Nanotube-Based Electrodes with Enhanced Dispersion and Electrochemical Properties for Blood Glucose Monitoring.

Biosensors (Basel)

December 2024

Department of Gyedang College of General Education, Sangmyung University, 31 Sangmyungdae-Gil, Dongnam-Gu, Cheonan 31066, Republic of Korea.

The evolution of high-performance electrode materials has significantly impacted the development of real-time monitoring biosensors, emphasizing the need for compatibility with biomaterials and robust electrochemical properties. This work focuses on creating electrode materials utilizing single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs), specifically examining their dispersion behavior and electrochemical characteristics. By using ultrasonic waves, we analyzed the dispersion of CNTs in various solvents, including N, N-dimethylformamide (DMF), deionized water (DW), ethanol, and acetone.

View Article and Find Full Text PDF

Although Pb-based metal halide perovskites (MHPs) have excellent photoelectric characteristics, their toxicity remains a limiting factor for their widespread application. In the paper, a series of CsCuClxBr3-x (x = 1, 2, 3) MHP microcrystals were developed and their hydrogen evolution performance in ethanol and HX (X = Cl, Br) was also studied. Among them, CsCuCl3 microcrystals exhibit high hydrogen evolution performance in both HX and ethanol, attributed to their longest average lifetime and suitable band structure.

View Article and Find Full Text PDF

A novel multi-organ male model of alcohol-induced acute-on-chronic liver failure reveals NET-mediated hepatocellular death which is prevented by RIPK3 inhibition.

Cell Mol Gastroenterol Hepatol

December 2024

Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Broad Institute, Cambridge, MA. Electronic address:

Background And Aims: Alcohol abuse is the most frequent precipitating factor of acute-on-chronic liver failure (ACLF). We aimed at developing an alcohol-induced ACLF model and dissecting its underlying molecular mechanisms.

Methods: ACLF was triggered by a single alcohol binge (5g/Kg) in a bile duct ligation (BDL) liver fibrosis murine model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!