Recent studies suggest that in disordered ultrathin films superconducting (SC) state may be intrinsically inhomogeneous. Here we investigate the nature of SC state in ultrathin Nb films, of thickness d ranging from 1.2 to 20 nm, which undergo a transition from amorphous to polycrystalline structure at the thickness [Formula: see text] nm. We show that the properties of SC state are very different in polycrystalline and amorphous films. The upper critical field ([Formula: see text]) is orbitally limited in the first case, and paramagnetically limited in the latter. The magnetic field induced superconductor-metal transition is observed, with the critical field approximately constant or decreasing as a power-law with the film conductance in polycrystalline or amorphous films, respectively. The scaling analysis indicates distinct scaling exponents in these two types of films. Negative contribution of the SC fluctuations to conductivity exists above [Formula: see text], particularly pronounced in amorphous films, signaling the presence of fluctuating Cooper pairs. These observations suggest the development of local inhomogeneities in the amorphous films, in the form of proximity-coupled SC islands. An usual evolution of SC correlations on cooling is observed in amorphous films, likely related to the effect of quantum fluctuations on the proximity-induced phase coherence.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7642399PMC
http://dx.doi.org/10.1038/s41598-020-75968-9DOI Listing

Publication Analysis

Top Keywords

amorphous films
20
critical field
12
films
9
upper critical
8
superconductor-metal transition
8
ultrathin films
8
polycrystalline amorphous
8
[formula text]
8
amorphous
6
field
4

Similar Publications

Crystallization from the melt is a critical process governing the properties of semi-crystalline polymeric materials. While structural analyses of melting and crystallization transitions in bulk polymers have been widely reported, in contrast, those in thin polymer films on solid supports have been underexplored. Herein, in situ Raman microscopy and self-modeling curve resolution (SMCR) analysis are applied to investigate the temperature-dependent structural changes in poly(ethylene oxide) (PEO) films during melting and crystallization phase transitions.

View Article and Find Full Text PDF

We present a comprehensive theoretical study, using state-of-the-art density functional theory simulations, of the structural and electrochemical properties of amorphous pristine and iron-doped nickel-(oxy)hydroxide catalyst films for water oxidation in alkaline solutions, referred to as NiCat and Fe:NiCat. Our simulations accurately capture the structural changes in locally ordered units, as reported by X-ray absorption spectroscopy, when the catalyst films are activated by exposure to a positive potential. We emphasize the critical role of proton-coupled electron transfer in the reversible oxidation of Ni(II) to Ni(III/IV) during this activation.

View Article and Find Full Text PDF

Defect-Mediated Crystallization of the Particulate TiO Photocatalyst Grown by Atomic Layer Deposition.

J Phys Chem C Nanomater Interfaces

January 2025

Surface Science Laboratory, Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland.

Nanopowders or films of pure and mixed oxides in nanoparticulate form have gained specific interest due to their applicability in functionalizing high-surface-area substrates. Among various other applications, our presented work primarily focuses on the behavior of TiO as a photocatalyst deposited by atomic layer deposition (ALD) on a quartz particle. The photocatalytic activity of TiO on quartz particles grown by ALD was studied in terms of ALD growth temperature and post-treatment heating rate.

View Article and Find Full Text PDF

Enhancing both strength and plasticity simultaneously in nanostructured materials remains a significant challenge. While grain refinement is effective in increasing strength, it typically leads to reduced plasticity due to localized strain. In this study, we propose a novel design strategy featuring a dual-nano composite structure with grain boundary segregation to enhance the deformation stability of nanostructured materials.

View Article and Find Full Text PDF

This study investigates the sustainable use of spp. bark through different chemical (hydrothermal, acid, alkaline, and bleaching) and physical (milling) pretreatments in the production of sustainable films. Valorization of agro-industrial residues and the demand for sustainable materials pose challenges for environmentally responsible solutions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!