Gene drives are genetic elements that manipulate Mendelian inheritance ratios in their favour. Understanding the forces that explain drive frequency in natural populations is a long-standing focus of evolutionary research. Recently, the possibility to create artificial drive constructs to modify pest populations has exacerbated our need to understand how drive spreads in natural populations. Here, we study the impact of polyandry on a well-known gene drive, called t haplotype, in an intensively monitored population of wild house mice. First, we show that house mice are highly polyandrous: 47% of 682 litters were sired by more than one male. Second, we find that drive-carrying males are particularly compromised in sperm competition, resulting in reduced reproductive success. As a result, drive frequency decreased during the 4.5 year observation period. Overall, we provide the first direct evidence that the spread of a gene drive is hampered by reproductive behaviour in a natural population.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7643059 | PMC |
http://dx.doi.org/10.1038/s41467-020-18967-8 | DOI Listing |
Biotechnol Notes
December 2024
Centre for Molecular Biology, Central University of Jammu, Rahya Suchani (Bagla), Jammu & Kashmir, India.
The amidases (EC 3.5.1.
View Article and Find Full Text PDFACS Med Chem Lett
January 2025
Discovery Biology, PMV Pharmaceuticals, Inc., 400 Alexander Park Drive, Suite 301, Princeton, New Jersey 08540, United States.
p53 is a potent transcription factor that is crucial in regulating cellular responses to stress. Mutations in the gene are found in >50% of human cancers, predominantly occurring in the DNA-binding domain (amino acids 94-292). The Y220C mutation accounts for 1.
View Article and Find Full Text PDFNeurol Genet
February 2025
Department of Neurology and Neurosurgery, McGill University, Montreal, Canada.
In the late 1800s, Nikolaus Friedreich first described "degenerative atrophy of the posterior columns of the spinal cord," noting its connection to progressive ataxia, sensory loss, and muscle weakness, now recognized as Friedreich ataxia (FRDA). Renewed interest in the disease in the 1970s and 80s by the Quebec Cooperative Group and by Anita Harding led to the development of clinical diagnostic criteria and insights into associated biochemical abnormalities, although the primary defect remained unknown. In 1988, Susan Chamberlain mapped FRDA's location on chromosome 9.
View Article and Find Full Text PDFAm J Physiol Endocrinol Metab
January 2025
Department of Microbiology, Immunology, & Cell Biology, West Virginia University School of Medicine, 64 Medical Center Drive, Morgantown, WV, 26506, USA.
Human neonates are predisposed to an increased risk of mortality from infection due to fundamental differences in the framework of innate and adaptive immune responses relative to those in the adult population. As one key difference in neonates, an increase in the immunosuppressive cytokine, IL-27, is responsible for poor outcomes in a murine neonatal model of bacterial sepsis. In our model, the absence of IL-27 signaling during infection is associated with improved maintenance of body mass, increased bacterial clearance with reduced systemic inflammation, and decreased mortality rates that correlate to preservation of glucose homeostasis and insulin production.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Department of Biotechnology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.
Background: Preserving plant genetic resources is essential for tackling global food security challenges. Effectively meeting future agricultural demands requires comprehensive and efficient assessments of genetic diversity in breeding programs and germplasm from gene banks. This research investigated the diversity of pheno-morphological traits, along with the fatty acid and tocopherol content and composition, in 135 double haploid lines of camelina.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!