Extension of the Mechanistic Tissue Distribution Model of Rodgers and Rowland by Systematic Incorporation of Lysosomal Trapping: Impact on Unbound Partition Coefficient and Volume of Distribution Predictions in the Rat.

Drug Metab Dispos

Bayer AG, Pharmaceuticals R&D, Translational Sciences, Research Pharmacokinetics, Berlin, Germany (M.V.S., A.R., P.L.); School of Life Sciences, Tsinghua University, Beijing, China (X.L.); and Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, Heidelberg, Germany (M.V.S., G.F.)

Published: January 2021

AI Article Synopsis

  • Physiologically based pharmacokinetic (PBPK) modeling traditionally overlooks lysosomal trapping, which can influence how lipophilic drugs are distributed in cells and tissues.
  • The research aimed to accurately predict lysosomal drug content and integrate this factor into existing pharmacokinetic prediction models, validating their method with a larger set of compounds and estimating lysosomal volume in rat tissues.
  • The findings showed significant improvements in drug distribution predictions, particularly for basic lipophilic compounds like nicotine, though the effect of lysosomal trapping was less pronounced for more lipophilic drugs, indicating its relevance for understanding drug behavior in the body.

Article Abstract

Physiologically based pharmacokinetic modeling has become a standard tool to predict drug distribution in early stages of drug discovery; however, this does not currently encompass lysosomal trapping. For basic lipophilic compounds, lysosomal sequestration is known to potentially influence intracellular as well as tissue distribution. The aim of our research was to reliably predict the lysosomal drug content and ultimately integrate this mechanism into pharmacokinetic prediction models. First, we further validated our previously presented method to predict the lysosomal drug content (Schmitt et al., 2019) for a larger set of compounds ( = 41) showing a very good predictivity. Using the lysosomal marker lipid bis(monoacylglycero)phosphate, we estimated the lysosomal volume fraction for all major tissues in the rat, ranging from 0.03% for adipose up to 5.3% for spleen. The pH-driven lysosomal trapping was then estimated and fully integrated into the mechanistic distribution model published by Rodgers et al. (2005) Predictions of Kpu improved for all lysosome-rich tissues. For instance, Kpu increased for nicotine 4-fold (spleen) and 2-fold (lung and kidney) and for quinidine 1.8-fold (brain), although for most other drugs the effects were much less (≤7%). Overall, the effect was strongest for basic compounds with a lower lipophilicity, such as nicotine, for which the unbound volume of distribution at steady-state prediction changed from 1.34 to 1.58 l/kg. For more lipophilic (basic) compounds or those that already show strong interactions with acidic phospholipids, the additional contribution of lysosomal trapping was less pronounced. Nevertheless, lysosomal trapping will also affect intracellular distribution of such compounds. SIGNIFICANCE STATEMENT: The estimation of the lysosomal content in all body tissues facilitated the incorporation of lysosomal sequestration into a general physiologically based pharmacokinetic model, leading to improved predictions as well as elucidating its influence on tissue and subcellular distribution in the rat.

Download full-text PDF

Source
http://dx.doi.org/10.1124/dmd.120.000161DOI Listing

Publication Analysis

Top Keywords

lysosomal trapping
20
lysosomal
12
distribution
8
tissue distribution
8
distribution model
8
incorporation lysosomal
8
volume distribution
8
physiologically based
8
based pharmacokinetic
8
lysosomal sequestration
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!