Docosahexaenoic acid impacts macrophage phenotype subsets and phagolysosomal membrane permeability with particle exposure.

J Toxicol Environ Health A

Department of Biomedical and Pharmaceutical Sciences, Center for Environmental Health Sciences, University of Montana, Missoula, MT, USA.

Published: February 2021

Inhalation of particles results in pulmonary inflammation; however, treatments are currently lacking. Docosahexaenoic acid (DHA) is an omega-3 polyunsaturated fatty acid shown to exhibit anti-inflammatory capabilities. The impact of DHA on particle-induced inflammation is unclear; therefore, the aim of this study was to examine the hypothesis that DHA downregulates macrophage inflammatory responses by altering phagolysosomal membrane permeability (LMP) and shifting macrophage phenotype. Isolated Balb/c alveolar macrophages (AM) were polarized into M1, M2a, M2b, or M2c phenotypes , treated with DHA, and exposed to a multi-walled carbon nanotube (MWNCT) or crystalline silica (SiO). Results showed minimal cytotoxicity, robust effects for silica particle uptake, and LMP differences between phenotypes. Docosahexaenoic acid prevented these effects to the greatest extent in M2c phenotype. To determine if DHA affected inflammation similarly , Balb/c mice were placed on a control or 1% DHA diet for 3 weeks, instilled with the same particles, and assessed 24 hr following instillation. Data demonstrated that in contrast to findings, DHA increased pulmonary inflammation and LMP. These results suggest that pulmonary responses may not necessarily be predicted from single-cell responses .

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7855733PMC
http://dx.doi.org/10.1080/15287394.2020.1842826DOI Listing

Publication Analysis

Top Keywords

docosahexaenoic acid
12
macrophage phenotype
8
phagolysosomal membrane
8
membrane permeability
8
pulmonary inflammation
8
dha
7
acid impacts
4
impacts macrophage
4
phenotype subsets
4
subsets phagolysosomal
4

Similar Publications

Atopic dermatitis (AD), also known as eczema, is a chronic or relapsing inflammatory skin disease characterized by repeated exacerbations and remissions. Here, we investigated the effects of squid phospholipids (PLs) extracted from Todarodes pacificus on AD. The composition of squid PLs was analyzed using thin-layer chromatography and high-performance liquid chromatography, and the effects of PLs on AD were investigated using a rat paw edema model and an AD-like mouse model (NC/Nga mice).

View Article and Find Full Text PDF

Introduction: Long-term fasting (LF) activates an adaptative response to switch metabolic fuels from food glucose to lipids stored in adipose tissues. The increase in free fatty acid (FFA) oxidation during fasting triggers health benefits. We questioned if the changes in lipid metabolism during LF could affect lipids in cell membranes in humans.

View Article and Find Full Text PDF

Recently, the biosynthesis of omega-3 fatty acids (ω3 FAs) in yeast has witnessed significant advancements. Notably, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) play crucial roles in overall human growth, encompassing neurological development, cardiovascular health, and immune function. However, traditional sources of ω3 FAs face limitations such as environmental concerns.

View Article and Find Full Text PDF

The synthesis of n-3 and n-6 polyunsaturated acids (PUFAs) is associated with physiological functions in mammals, being catalyzed by Δ-5D and Δ-6D desaturases and elongases Elovl-2 and Elovl-5. In this context, we aimed to study the chief kinetic features of PUFA liver anabolism, looking upon (i) the time-dependency for the specific activity of Δ-6D, Δ-5D, Elovl2, Elovl2/5 and Elovl5, using n-3 and n-6 precursors between 0 and 240 min ex vivo in mouse liver.; and (ii) the specific activity-substrate (α-linolenic acid; ALA) concentration responses of Δ-6D in the absence and presence of linoleic acid (LA), arachidonic acid (ARA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), an enzyme regarded as the rate-limiting step in PUFA anabolism.

View Article and Find Full Text PDF

Thirty male Hu lambs (38.95 ± 3.87 kg; 6 months old) were randomly assigned to two groups: (1) SBM (a basal diet with soybean meal) and (2) FSM (a diet replacing 10 % soybean meal with 10 % flax seed meal) to evaluate their effects on Hu lamb production and slaughter performance, meat quality, muscle fatty acid composition, and antioxidant capacity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!