Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Clinical use of the chemotherapeutic agent vincristine (VCR) is limited by chemotherapy-induced peripheral neuropathy (CiPN). A new formulation of VCR encapsulated by nanoparticles has been proposed and developed to alleviate CiPN. We hypothesized in nonclinical animals that the nanoparticle drug would be less neurotoxic due to different absorption and distribution properties to the peripheral nerve from the unencapsulated free drug. Here, we assessed whether VCR encapsulation in nanoparticles alleviates CiPN using behavioral gait analysis (CatWalk), histopathologic and molecular biological (RT-qPCR) approaches. Adult male C57BL/6 mice were assigned to 3 groups (empty nanoparticle, nano-VCR, solution-based VCR, each n = 8). After 15 days of dosing, animals were euthanized for tissue collection. It was shown that intraperitoneal administration of nano-VCR (0.15 mg/kg, every other day) and the empty nanoparticle resulted in no changes in gait parameters; whereas, injection of solution-based VCR resulted in decreased run speed and increased step cycle and stance ( < 0.05). There were no differences in incidence and severity of degeneration in the sciatic nerves between the nano-VCR-dosed and solution-based VCR-dosed animals. Likewise, decreased levels of a nervous tissue-enriched microRNA-183 in circulating blood did not show a significant difference between the nano- and solution-based VCR groups ( > 0.05). Empty nanoparticle administration did not cause any behavioral, microRNA, or structural changes. In conclusion, this study suggests that the nano-VCR formulation may alleviate behavioral changes in CiPN, but it does not improve the structural changes of CiPN in peripheral nerve. Nanoparticle properties may need to be optimized to improve biological observations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/1091581820968255 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!