Metal sulfides have attracted tremendous research interest for developing high-performance electrodes for potassium-ion batteries (PIBs) for their high theoretical capacities. Nevertheless, the practical application of metal sulfides in PIBs is still unaddressed due to their intrinsic shortcomings of low conductivity and severe volume changes during the potassiation/depotassiation process. Herein, robust FeS/C hybrid nanocages reinforced by defect-rich MoS nanosheets (FeS/C@d-MoS) were designed, which possess abundant multichannel and active sites for potassium-ion transportation and storage. Kinetic analysis and theoretical calculation verify that the introduction of defect-rich MoS nanosheets dramatically promotes the potassium-ion diffusion coefficient. The measurements revealed the potassium-ion storage mechanism in the FeS/C@d-MoS composite. Benefitting from the tailored structural design, the FeS/C@d-MoS hybrid nanocages show high reversible capacity, exceptional rate property, and superior cyclability.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.0c07733DOI Listing

Publication Analysis

Top Keywords

hybrid nanocages
12
defect-rich mos
12
mos nanosheets
12
fes/c hybrid
8
nanocages reinforced
8
reinforced defect-rich
8
potassium-ion storage
8
metal sulfides
8
potassium-ion
5
robust strategy
4

Similar Publications

Switch-Type Electrochemiluminescence Aptasensor for AFB1 Detection Based on CoS Quantum Dots Encapsulated in Co-LDH and a Ferrocene Quencher.

Anal Chem

December 2024

Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, China.

Among the various aflatoxin B1 (AFB1) assays, performing accurate detection is difficult because false positives and false negatives are frequent due to limited sensitivity, expensive equipment, or inadequate pretreatment during operation. Here, an "off-on" switch-type electrochemiluminescence (ECL) aptasensor armed with cobalt-sulfur quantum dots was encapsulated in hollow cobalt-layered double hydroxide nanocages as an enhanced luminescent probe (Co-LDH@QDs), and a ferrocene-modified aptamer (Fc-APT) was used as a luminescent quencher. In general, when Fc-APT was hybridized with complementary DNA modified with a DNA nanotetrahedron, electron transfer between ferrocene and Co-LDH@QDs was facilitated, leading to efficient quenching of the ECL intensity into an "off" state in the absence of AFB1.

View Article and Find Full Text PDF
Article Synopsis
  • - Osteoarthritis (OA) is a common degenerative disease causing joint pain, deformity, and disability, with current treatments often being ineffective or having side effects.
  • - A new light-inducible nanomedicine has been developed to deliver both an anti-inflammatory drug (diacerein) and siRNA targeting nerve growth factor, potentially improving pain relief and treatment efficacy in OA.
  • - The nanomedicine, made with poly(-amino-ester)-coated gold nanocages, shows effective drug retention at the joint site, enhances chondrocyte survival during inflammation, and significantly supports joint repair in mouse models.
View Article and Find Full Text PDF

Engineering hybrid CuS/CoS nanocages by ion reutilization for highly sensitive glucose sensing platforms.

Talanta

December 2024

College of Materials Science and Technology, Sichuan University, Chengdu, 610065, PR China; The Institute of Technological Sciences, Wuhan University, Wuhan, 430072, PR China. Electronic address:

Constructing hybrid hollow nano-electrocatalysts with various transition metal sulfides (TMSs) is highly desirable for sensitive enzyme-free glucose monitoring, but limited research has been conducted due to the constraints of current demanding synthesis technologies. In this study, we integrated CuS and CoS as hybrid nanocages (h-NCs) by advanced synthetic strategies, including coordinated etching and precipitation (CEP) and template ion reutilization. The resulting CuS/CoS h-NCs induced good synergistic effect in electrocatalytic activities, glucose adsorption, and electrical conductivity, as validated by the density functional theory (DFT) calculations.

View Article and Find Full Text PDF
Article Synopsis
  • Superhydrophobic surfaces with hierarchical micro/nanostructures, like the developed O-Ph-POSS on fluorinated graphene, achieve high water contact angles (152°) and low surface energy (5.6 mJ/m²), making them highly robust and effective in water-repelling applications.
  • The O-Ph-POSS-FG hybrid demonstrated remarkable oil absorption (200-500 wt%) and was successfully used to coat polyurethane sponges, achieving oil-water separation efficiencies of 90%-99%, even after multiple cycles.
  • Durability tests showed that the sponges maintained superhydrophobic properties over time, retaining effective water contact angles and separation efficiency after one year and multiple mechanical stress tests.
View Article and Find Full Text PDF

Controlling the structure and functionality of porous silica nanoparticles has been a continuous source of innovation with important potential for advanced biomedical applications. Their synthesis, however, usually involves passive surfactants or amphiphilic copolymers that do not add value to the material after synthesis. In contrast, polyion complex (PIC) micelles based on hydrophilic block copolymers allow for the direct synthesis of intrinsically functional hybrid materials.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!