A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Propagation and Attenuation Characteristics of an Ultrasonic Beam in Dissimilar-Metal Welds. | LitMetric

Ultrasonic inspection of welds joining dissimilar metals in nuclear power plants has proven to be a challenge, because the ultrasonic waves are subject to diffraction, distortion, scattering, and noise. These perturbations are due to their interactions with coarse-grained microstructures having anisotropic and heterogeneous metallurgical properties that can promote ultrasonic attenuation. In this paper, to improve the reliability of ultrasonic testing for dissimilar-metal welds (DMWs), ultrasonic beam characteristics for DMWs with a buttering layer were investigated in order to analyze the beam distortion phenomenon caused by inhomogeneous anisotropic properties and coarse grains. Ultrasonic testing was performed on DMW specimens using single ultrasonic transducers to investigate the behavior of the ultrasonic beam in the welds. According to the anisotropic and heterogeneous properties, when passing through the weld and the buttering layer of the DMW, ultrasonic waves were distorted and attenuation was high. In particular, in the case of using angular incidence that passed through the weld and the buttering layer in turn, the received ultrasonic data did not contain accurate internal information. From this, it was verified that internal defects may be detected by transmitting ultrasonic waves in different directions. Finally, the existing limitations on the application of non-destructive ultrasonic testing to dissimilar-metal welds were verified, and a solution to the measurement method was proposed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7663410PMC
http://dx.doi.org/10.3390/s20216259DOI Listing

Publication Analysis

Top Keywords

ultrasonic
13
ultrasonic beam
12
dissimilar-metal welds
12
ultrasonic waves
12
ultrasonic testing
12
buttering layer
12
anisotropic heterogeneous
8
testing dissimilar-metal
8
weld buttering
8
welds
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!