Context: Diabetic retinopathy (DR) is the leading cause of incident blindness among working-age adults in the United States. Federally designated safety-net clinics (FDSC) often serve as point-of-contact for patients least likely to receive recommended DR screenings, creating opportunity for targeted interventions to increase screening access and compliance.

Study Design And Methods: With such a goal, we implemented and assessed the longitudinal performance of an FDSC-based telemedicine DR screening (TDRS) network of 22 clinical sites providing nonmydriatic fundus photography with remote interpretation and reporting. Retrospective analysis of patient encounters between February 2014 and January 2019 was performed to assess rates of pathology and referral. A generalized estimating equation logistic regression model was used for subset analysis from audits of pre- and post-implementation screening rates. Finally, patient surveys were conducted and assessed as a measure of intervention acceptability.

Results: Of the 13,923 individual telescreening encounters (4327 female, 4220 male, and 5376 unspecified; mean [SD] age, 54.9 [12.5] years) studied, 10,540 were of adequate quality to identify 3532 (33.5%) patients with ocular pathology: 2319 (22.0%) patients had some level of DR with 1604 (15.2%) requiring specialist referral, and 808 (7.7%) patients required referral for other ocular pathologies. The mean screening rate for audited clinics in the year prior to program implementation was 29.9% (641/2147), which increased to 47.7% (1012/2124) in the program's first year, doubling patients' odds of being screened (OR 2.2; 95% CI: 1.3-3.7; P = .003). These gains were sustained over four years following implementation (OR 1.9; 95% CI: 1.1-3.1; P = .018) despite varied clinic screening performance (4-year averaged range, 22.9-55.1%). Odds of early detection likewise doubled for patients with consecutive screenings (OR 2.2, 95% CI: 2.0-2.4; P < .001). Finally, surveyed patients preferred TDRS to specialist exams (82.5%; 776/941) and would recommend the service to friends (92.7%; 868/936).

Conclusion And Relevance: A statewide, FDSC-centered TDRS network was successfully established and sustained in a medically underserved region of the United States. Our results suggest that large TDRS networks in FDSCs can increase screening access and compliance for otherwise unscreened populations, but outcomes can vary greatly among clinics. Further work to optimize program implementation is needed to maximize this model's impact.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7641408PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0241767PLOS

Publication Analysis

Top Keywords

diabetic retinopathy
8
federally designated
8
designated safety-net
8
safety-net clinics
8
united states
8
increase screening
8
screening access
8
tdrs network
8
program implementation
8
screening
7

Similar Publications

Empirical analysis on retinal segmentation using PSO-based thresholding in diabetic retinopathy grading.

Biomed Tech (Berl)

January 2025

Department of Computer Science, 72937 Centre for Machine Learning and Intelligence (CMLI), Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, India.

Objectives: Diabetic retinopathy (DR) is associated with long-term diabetes and is a leading cause of blindness if it is not diagnosed early. The rapid growth of deep learning eases the clinicians' DR diagnosing procedure. It automatically extracts the features and performs the grading.

View Article and Find Full Text PDF

Human amniotic epithelial stem cells, a potential therapeutic approach for diabetes and its related complications.

Hum Cell

January 2025

Department of Metabolism and Endocrinology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.

The escalating diabetes prevalence has heightened interest in innovative therapeutic strategies for this disease and its complications. Human amniotic epithelial stem cells (HAESCs), originate from the innermost layer of the placenta closest to the fetus and express stem cell markers in the amniotic membrane's umbilical cord attachment area, which have garnered significant attention. This article critically examines emerging research advancements and potential application values of hAESCs in treating diabetes and its complications.

View Article and Find Full Text PDF

Purpose: To explore the longitudinal changes in retinal and choroidal thickness and their relation with the onset of type 1 diabetes mellitus (T1DM) in children.

Methods: Thirty-eight children with T1DM and 71 healthy controls were included in this 3-year longitudinal study. Ophthalmic and systemic examinations were conducted on each participant.

View Article and Find Full Text PDF

Progressing nanotechnology to improve diagnosis and targeted therapy of Diabetic Retinopathy.

Biomed Pharmacother

January 2025

Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran.

The inherent limitations of traditional treatments for Diabetic Retinopathy (DR) have spurred the development of various nanotechnologies, offering a safer and more efficient approach to managing the disease. Nanomedicine platforms present promising advancements in the diagnosis and treatment of DR by enhancing imaging capabilities, enabling targeted and controlled drug delivery. These innovations ultimately lead to more effective and personalized treatments with fewer side effects.

View Article and Find Full Text PDF

Purpose: Proliferative vitreoretinopathy (PVR) is the leading cause of surgical failure following rhegmatogenous retinal detachment (RRD). In this study, we aimed to explore ocular and systemic risk factors for PVR due to RRD in a large patient database.

Methods: Patients who have a diagnosis of RRD and PVR, and who have been seen in the last seven years prior to analysis (January 2015-February 2023) were identified in the Vestrum Health database.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!