Effective soil erosion prediction models and proper conservation practices are important tools to mitigate soil erosion in hillside agricultural areas. The Water Nutrient and Light Capture in Agroforestry Systems (WaNuLCAS) and Water Erosion Prediction Project (WEPP) models are capable tools in soil erosion simulation in the conventional and conservation cropping systems in hillslopes. We calibrated both the models in maize monocropping and simultaneously validated them in maize-chili intercropping with Leucaena hedgerow for nine rainfall events in 2010, with the aim to evaluate their performances in runoff and sediment prediction on a skeleton soil in a hillslope, Western Thailand. The results showed that the calibrated WaNuLCAS model poorly predicts runoff prediction in the validation. In contrast, the calibrated WEPP model had a better performance in runoff prediction in the validation. For sediment prediction, the calibrated WaNuLCAS model predicted sediment yield better than the calibrated WEPP model in the validation because the WEPP model shows more variability of the sediment yield in the calibration (5.84 kg m-2) than the WaNuLCAS (5.18 kg m-2). Thus, the WEPP model was more suitable for runoff prediction than sediment prediction in the monocropping system, whereas the WaNuLCAS model was better suited for sediment yield prediction than runoff prediction, especially in complex intercropping systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7641452 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0241689 | PLOS |
Sci Total Environ
January 2025
School of Karst Science, Guizhou Normal University, Guiyang 550001, PR China.
Extreme precipitation is a crucial trigger for soil erosion events in karst regions. However, the existence of a scale effect in suspended sediment characteristics of karst basins and which extreme precipitation variables control this effect remain unclear. To investigate this, we analyzed the scale effect on suspended sediment characteristics using monthly hydrological data from five karst basins of varying scales, consistently monitored from 2012 to 2019.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Laboratory LMGCE, Ecole Nationale Polytechnique, 10 Rue Frères OUDEK 16200 El-Harrach, Algiers, Algeria.
The focus in the present study is on the quantification soil erodibility properties (representing an erosion threshold (such as the critical shear stress) and a resistance property (e.g., the soil erosion coefficient)).
View Article and Find Full Text PDFBiodegradation
January 2025
Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai, Tamilnadu, 608502, India.
Pathogens
November 2024
Department of Parasitology and Invasive Diseases, National Veterinary Research Institute-State Research Institute, Aleja Partyzantów 57, 24-100 Puławy, Poland.
Substances of organic origin are seeing increasing use in agriculture as rich sources of nutrients for plants. The aim of this study was to determine the microbiological contamination of sewage sludge and digestate to assess their safe use as fertilizers in Poland. The assessment of microbial soil, sewage sludge and digestate contamination was based on the total number of mesophilic bacteria and Gram-negative bacteria from the family.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
School of Life Sciences, Yunnan University, Kunming 650500, China.
Chitinase-3-like-1 (Chi3l1), also known as YKL-40 or BRP-39, is a highly conserved mammalian chitinase with a chitin-binding ability but no chitinase enzymatic activity. Chi3l1 is secreted by various cell types and induced by several inflammatory cytokines. It can mediate a series of cell biological processes, such as proliferation, apoptosis, migration, differentiation, and polarization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!