A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Forecasting imported COVID-19 cases in South Korea using mobile roaming data. | LitMetric

Forecasting imported COVID-19 cases in South Korea using mobile roaming data.

PLoS One

Department of Data-centric Problem Solving Research, Korea Institute of Science and Technology Information, Daejeon, Republic of Korea.

Published: November 2020

As the number of global coronavirus disease (COVID-19) cases increases, the number of imported cases is gradually rising. Furthermore, there is no reduction in domestic outbreaks. To assess the risks from imported COVID-19 cases in South Korea, we suggest using the daily risk score. Confirmed COVID-19 cases reported by John Hopkins University Center, roaming data collected from Korea Telecom, and the Oxford COVID-19 Government Response Tracker index were included in calculating the risk score. The risk score was highly correlated with imported COVID-19 cases after 12 days. To forecast daily imported COVID-19 cases after 12 days in South Korea, we developed prediction models using simple linear regression and autoregressive integrated moving average, including exogenous variables (ARIMAX). In the validation set, the root mean squared error of the linear regression model using the risk score was 6.2, which was lower than that of the autoregressive integrated moving average (ARIMA; 22.3) without the risk score as a reference. Correlation coefficient of ARIMAX using the risk score (0.925) was higher than that of ARIMA (0.899). A possible reason for this time lag of 12 days between imported cases and the risk score could be the delay that occurs before the effect of government policies such as closure of airports or lockdown of cities. Roaming data could help warn roaming users regarding their COVID-19 risk status and inform the national health agency of possible high-risk areas for domestic outbreaks.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7641397PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0241466PLOS

Publication Analysis

Top Keywords

risk score
28
covid-19 cases
24
imported covid-19
16
south korea
12
roaming data
12
covid-19
8
cases
8
cases south
8
imported cases
8
domestic outbreaks
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!