To evaluate the risk of nonsyndromic orofacial clefts (NSOFCs) associated with LINE-1 methylation, as a marker of global DNA methylation, and the effect of MTHFR functional variants on this variable. LINE-1 methylation was evaluated by bisulfite modification coupled to DNA pyrosequencing in 95 NSOFC cases and 95 controls. In these subjects, genotypes for variants c.C677T (rs1801133) and c.A1298C (rs1801131) were obtained. Middle levels (second tertile) of LINE-1 methylation increase the risk of NSOFCs. In addition, LINE-1 methylation depends on c.A1298C genotypes in controls but not in cases. A nonlinear association between global DNA methylation and NSOFCs was detected in this Chilean population, which appears to be influenced by MTHFR functional variants.

Download full-text PDF

Source
http://dx.doi.org/10.2217/epi-2020-0021DOI Listing

Publication Analysis

Top Keywords

line-1 methylation
16
nonsyndromic orofacial
8
orofacial clefts
8
methylation mthfr
8
global dna
8
dna methylation
8
mthfr functional
8
functional variants
8
methylation
7
clefts chile
4

Similar Publications

LINE-1-Induced Retrotransposition Affects Early Preimplantation Embryo DNA Integrity and Pluripotency.

Int J Mol Sci

November 2024

Laboratory of Medical Genetics and Human Reproduction, School of Health Sciences, Faculty of Medicine, University of Ioannina, 451 10 Ioannina, Greece.

Retrotransposable elements are implicated in genome rearrangements and gene expression alterations that result in various human disorders. In the current study, we sought to investigate the potential effects of long interspersed elements-1 (LINE-1) overexpression on the integrity and methylation of DNA and on the expression of three major pluripotency factors (OCT4, SOX2, NANOG) during the preimplantation stages of human embryo development. Human MI oocytes were matured in vitro to MII and transfected through intracytoplasmic sperm injection (ICSI) either with an EGFP vector carrying a cloned active human LINE-1 retroelement or with the same EGFP vector without insert as control.

View Article and Find Full Text PDF

Background: Cytokine-induced killer (CIK) cell therapy has proven successful in clinical trials regarding glioblastoma. Equally important are the hints suggesting peroxisome proliferator-activated receptors (PPARs) ligands being co-expressed in the central nervous system (CNS). This provides a rationale about investigating the possible synergistic effect of CIK cells and PPARs.

View Article and Find Full Text PDF

Structure and Methyl-lysine Binding Selectivity of the HUSH Complex Subunit MPP8.

J Mol Biol

December 2024

Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK; Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge CB2 0AW, UK. Electronic address:

The Human Silencing Hub (HUSH) guards the genome from the pathogenic effects of retroelement expression. Composed of MPP8, TASOR, and Periphilin-1, HUSH recognizes actively transcribed retrotransposed sequences by the presence of long (>1.5-kb) nascent transcripts without introns.

View Article and Find Full Text PDF

Purpose: The detection of circulating tumor DNA, which allows non-invasive tumor molecular profiling and disease follow-up, promises optimal and individualized management of patients with cancer. However, detecting small fractions of tumor DNA released when the tumor burden is reduced remains a challenge.

Experimental Design: We implemented a new highly sensitive strategy to detect base-pair resolution methylation patterns from plasma DNA and assessed the potential of hypomethylation of LINE-1 retrotransposons as a non-invasive multi-cancer detection biomarker.

View Article and Find Full Text PDF

Long interspersed nuclear elements 1 (LINE-1) are the most abundant and the only autonomous mobile elements in the human genome. When their epigenetic repression is removed, it can lead to disease, such as autoimmune diseases and cancer. Coeliac disease (CeD) is an immune-mediated disease triggered by an abnormal T-cell response to dietary gluten and a predisposing condition of small bowel adenocarcinoma (SBA), frequently characterized by epigenetic alterations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!