Liquid bridges are commonly encountered in nature and the liquid transfer induced by their rupture is widely used in various industrial applications. In this work, with the focus on the porous tip, we studied the impacts of capillary effects on the liquid transfer induced by the rupture through numerical simulations. To depict the capillary effects of a porous tip, a time scale ratio, , is proposed to compare the competing mechanisms of spontaneous imbibition and external drag. In terms of , we then develop a theoretical model for estimating the liquid retention ratio considering the geometry, porosity, and wettability of tips. The mechanism presented in this work provides a possible approach to control the liquid transfer with better accuracy in microfluidics or microfabrications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.0c02479 | DOI Listing |
Methods Mol Biol
January 2025
Bioscience, Research and Early Development, Oncology, AstraZeneca, Cambridge, Cambridgeshire, UK.
A protocol for the preparation of tissue extracts for the targeted analysis ca. 150 polar metabolites, including those involved in central carbon metabolism, is described, using a reversed phase ion pair U(H)PLC-MS method. Data collection enabled in high-resolution mass spectrometry detection provides highly specific and sensitive acquisition of metabolic intermediates with wide range physicochemical properties and pathway coverage.
View Article and Find Full Text PDFChemistry
January 2025
University of Windsor Faculty of Science, Chemistry & Biochemsitry, 401 Sunset Avenue, N9B 3P4, Windsor, CANADA.
Attachment of three different heterocycles with electron donor or acceptor character to a central 1,3,5-triazine core generates readily soluble side-chain free dyes with two displaying soft crystalline mesomorphism and one displaying a nematic liquid crystal phase as confirmed by polarized optical microscopy, calorimetry, gravimetric analysis, and powder X-ray diffraction. Equally intriguing is the dyes' relatively strong electronic communication between donor and acceptor subchromophores that are meta-conjugated to one another, which is experimentally observed as a broad intramolecular charge-transfer absorption that can extend over 100 nm past the most intense absorption event and is computationally confirmed through density functional theory (DFT) evaluations of the molecular ground- and excited-state properties. This molecular design permits the preparation of dyes with panchromatic absorption not just based on the additive absorption of individual subchromophores.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Centre for Advanced Laser Manufacturing (CALM), School of Mechanical Engineering, Shandong University of Technology, Zibo 255000, P. R. China.
Developing versatile, scalable, and durable coatings that repel various matters in different service environments is of great importance for engineered materials applications but remains highly challenging. Here, the mesoporous silica microspheres (HMS) fabricated by the hard template method were utilized as micro-nanocontainers to encapsulate the hydrophobic agent of perfluorooctyltriethoxysilane (F13) and the corrosion inhibitor of benzotriazole (BTA), forming the functional microsphere of F-HMS(BTA). Moreover, the synthesized organosilane-modified silica sol adhesive (SMP) and F-HMS(BTA) were further employed as the binder and functional filler to construct a superhydrophobic self-healing coating of SMP@F-HMS(BTA) on various engineering metals through scalable spraying.
View Article and Find Full Text PDFChem Sci
January 2025
Department of Chemistry, Indian Institute of Technology Hauz Khas Delhi New Delhi 110016 India
The direct transformation of methane into C oxygenates such as acetic acid selectively using molecular oxygen (O) is a significant challenge due to the chemical inertness of methane, the difficulty of methane C-H bond activation/C-C bond coupling and the thermodynamically favored over-oxidation. In this study, we have successfully developed a porous aluminium metal-organic framework (MOF)-supported single-site mono-copper(ii) hydroxyl catalyst [MIL-53(Al)-Cu(OH)], which is efficient in directly oxidizing methane to acetic acid in water at 175 °C with a remarkable selectivity using only O. This heterogeneous catalyst achieved an exceptional acetic acid productivity of 11 796 mmol mol h in 9.
View Article and Find Full Text PDFBioelectrochemistry
January 2025
School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China; Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, People's Republic of China.
Highly stable calcium ion selective electrodes (Ca-ISEs) were developed by drop-casting a layer of poly(3,4-ethylenedioxythiophene): polystyrene sulfonate (PEDOT: PSS) as an ion-to-electron transfer layer onto Au electrode. The conductive PEDOT: PSS ink was prepared using a metastable liquid-liquid contact (MLLC) doping method, which induced phase separation, removed excess PSS, and significantly enhanced charge transfer kinetics and conductivity. The resulting Ca-ISEs exhibited excellent electrochemical performance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!