Intermolecular Oxidative Friedel-Crafts Reaction Triggered Ring Expansion Affording 9,10-Diarylphenanthrenes.

Org Lett

Research and Analytical Center for Giant Molecules, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan.

Published: November 2020

A novel intermolecular tandem oxidative aromatic coupling between arylidene fluorenes and unfunctionalized aromatics mediated by a DDQ/TFA oxidation system has been developed for the construction of 9,10-diarylphenanthrenes (DAPs). The formation of a benzylic carbocation species possessing a quaternary sp-carbon center on the fluorene moiety by an intermolecular oxidative Friedel-Crafts reaction of two different arenes successfully triggered the subsequent ring expansion to afford DAPs.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.orglett.0c03283DOI Listing

Publication Analysis

Top Keywords

intermolecular oxidative
8
oxidative friedel-crafts
8
friedel-crafts reaction
8
ring expansion
8
reaction triggered
4
triggered ring
4
expansion affording
4
affording 910-diarylphenanthrenes
4
910-diarylphenanthrenes novel
4
novel intermolecular
4

Similar Publications

The relative reactivity and cis/trans selectivity of the intramolecular [3+2] cycloaddition (IM32CA) reactions of nitrile oxide (NO), azide (AZ), nitrile sulfide (NS) and nitrile ylide (NY), leading to functionalized heterocycles are studied within the Molecular Electron Density Theory. The kinetically controlled IM32CA reactions are predicted to be cis stereospecific, while the reaction feasibility follows the order NY > NS > NO > AZ with the respective activation Gibbs free energies of 13.7, 17.

View Article and Find Full Text PDF

α-Halo borides are generally constructed Matteson homologation, and the synthesis of both fluorinated and functionalized ambiphilic boronates is challenging and has received inadequate attention. Herein, we describe the -methyliminodiacetyl boronate [B(MIDA)]-directed halogenation of alkenes a complementary sequence involving fluoroalkyl radical addition followed by guided radical-to-metal oxidative addition and C-X reductive elimination. The alkali cation and functional groups in B(MIDA) enable coulombic interaction and weak attraction with halogens, which could weaken the Pd-X bond and assist in C-X bond formation and is verified by DFT calculations.

View Article and Find Full Text PDF

Recent Advances in the Mechanisms of Quality Degradation and Control Technologies for Peanut Butter: A Literature Review.

Foods

January 2025

Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, School of Food and Health, Beijing Technology and Business University, Beijing 100080, China.

As the quality of life continues to improve globally, there is an increasing demand for nutritious and high-quality food products. Peanut butter, a widely consumed and nutritionally valuable product, must meet stringent quality standards and exhibit excellent stability to satisfy consumer expectations and maintain its competitive position in the market. However, its high fat content, particularly unsaturated fatty acids, makes it highly susceptible to quality deterioration during storage.

View Article and Find Full Text PDF

Redox modification of mA demethylase SlALKBH2 in tomato regulates fruit ripening.

Nat Plants

January 2025

State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China.

Hydrogen peroxide (HO) functions as a critical signalling molecule in controlling multiple biological processes. How HO signalling integrates with other regulatory pathways such as epigenetic modification to coordinately regulate plant development remains elusive. Here we report that SlALKBH2, an mA demethylase required for normal ripening of tomato fruit, is sensitive to oxidative modification by HO, which leads to the formation of homodimers mediated by intermolecular disulfide bonds, and Cys39 serves as a key site in this process.

View Article and Find Full Text PDF

Amino groups are abundant in both natural and synthetic molecules, offering highly accessible sites for modifying native biorelevant molecules. Despite significant progress with more reactive thiol groups, methods for connecting two amino groups with reversible linkers for bioconjugation applications remain elusive. Herein, we report the use of oxidative decarboxylative condensation of glyoxylic acid to crosslink two alkyl amines via a compact formamidine linkage, applicable in both intra- and intermolecular contexts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!