A novel intermolecular tandem oxidative aromatic coupling between arylidene fluorenes and unfunctionalized aromatics mediated by a DDQ/TFA oxidation system has been developed for the construction of 9,10-diarylphenanthrenes (DAPs). The formation of a benzylic carbocation species possessing a quaternary sp-carbon center on the fluorene moiety by an intermolecular oxidative Friedel-Crafts reaction of two different arenes successfully triggered the subsequent ring expansion to afford DAPs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.orglett.0c03283 | DOI Listing |
Chemphyschem
January 2025
Durgapur Government College, Department of Chemistry, INDIA.
The relative reactivity and cis/trans selectivity of the intramolecular [3+2] cycloaddition (IM32CA) reactions of nitrile oxide (NO), azide (AZ), nitrile sulfide (NS) and nitrile ylide (NY), leading to functionalized heterocycles are studied within the Molecular Electron Density Theory. The kinetically controlled IM32CA reactions are predicted to be cis stereospecific, while the reaction feasibility follows the order NY > NS > NO > AZ with the respective activation Gibbs free energies of 13.7, 17.
View Article and Find Full Text PDFChem Sci
January 2025
State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
α-Halo borides are generally constructed Matteson homologation, and the synthesis of both fluorinated and functionalized ambiphilic boronates is challenging and has received inadequate attention. Herein, we describe the -methyliminodiacetyl boronate [B(MIDA)]-directed halogenation of alkenes a complementary sequence involving fluoroalkyl radical addition followed by guided radical-to-metal oxidative addition and C-X reductive elimination. The alkali cation and functional groups in B(MIDA) enable coulombic interaction and weak attraction with halogens, which could weaken the Pd-X bond and assist in C-X bond formation and is verified by DFT calculations.
View Article and Find Full Text PDFFoods
January 2025
Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, School of Food and Health, Beijing Technology and Business University, Beijing 100080, China.
As the quality of life continues to improve globally, there is an increasing demand for nutritious and high-quality food products. Peanut butter, a widely consumed and nutritionally valuable product, must meet stringent quality standards and exhibit excellent stability to satisfy consumer expectations and maintain its competitive position in the market. However, its high fat content, particularly unsaturated fatty acids, makes it highly susceptible to quality deterioration during storage.
View Article and Find Full Text PDFNat Plants
January 2025
State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
Hydrogen peroxide (HO) functions as a critical signalling molecule in controlling multiple biological processes. How HO signalling integrates with other regulatory pathways such as epigenetic modification to coordinately regulate plant development remains elusive. Here we report that SlALKBH2, an mA demethylase required for normal ripening of tomato fruit, is sensitive to oxidative modification by HO, which leads to the formation of homodimers mediated by intermolecular disulfide bonds, and Cys39 serves as a key site in this process.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Nankai University, SKLEOC, 300071, Tianjin, CHINA.
Amino groups are abundant in both natural and synthetic molecules, offering highly accessible sites for modifying native biorelevant molecules. Despite significant progress with more reactive thiol groups, methods for connecting two amino groups with reversible linkers for bioconjugation applications remain elusive. Herein, we report the use of oxidative decarboxylative condensation of glyoxylic acid to crosslink two alkyl amines via a compact formamidine linkage, applicable in both intra- and intermolecular contexts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!