Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Homoconjugation and intramolecular "through-space" charge transfers are molecular phenomena that have been studied since the 1960s. A detailed understanding and control of these effects would provide a tool to tune the optoelectronic properties of organic molecules in respect of the necessities for applications such as for organic electronics. Triptycene is a perfect candidate to investigate homoconjugation effects due to its three-dimensional alignment of three aromatic phenylene units, separated by two methine bridges. Here, a series of 16 π-extended triptycenes with up to three different permuted electron-accepting units and an electron-rich veratrole unit are studied in detail by UV/vis spectroscopy and cyclovoltammetry in combination with DFT calculations to get a deeper understanding of homoconjugation and charge-transfer processes of triptycenes. Furthermore, the gained knowledge can be exploited to construct triptycene-based electron acceptors with fine-tuned adjustment of electronic properties, such as electron affinities, by thorough choice of the aromatic blades that interact through homoconjugation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.joc.0c02100 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!