Landfill leachate is exposed to sunlight through on- and off-site leachate treatment and disposal to surface water bodies. Very little is known about the potential phototransformation of fluorotelomer compounds in landfill leachates, which can undergo environmental oxidation and produce perfluorocarboxylic acids (PFCAs). This study investigated phototransformation of spiked 6:2 fluorotelomer sulfonate (FTS) (∼ 100 μg/L) in leachate under simulated sunlight, using a metal halide lamp (wavelength, 390 to 750 nm). To understand the effects of nitrate and humic acid (HA), phosphate buffer (pH 7.1) containing nitrate and HA were spiked with 6:2 FTS and irradiated under simulated sunlight for 72 h. Following irradiation, 6:2 FTS and known transformation products (i.e., PFCAs) were quantified in the samples using LC-MS/MS. The results showed that 6:2 FTS was undergoing indirect photolysis in leachate (half-life of ∼ 15 days), suggesting that indirect photolysis of 6:2 FTS is likely a relevant transformation pathway in sunlit aquatic environments. However, the spiked 6:2 FTS did not show any observable decrease in the presence of nitrate and HA over 72 h. Perfluorohexanoic acid (PFHxA) increased in irradiated leachate background samples (without 6:2 FTS spike) suggesting that phototransformation in sunlit leachate could lead to the formation of persistent PFCAs at environmental concentrations of the precursors. Future studies using probe compounds are recommended to better understand the roles of reactive species in phototransformation of 6:2 FTS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-020-11417-4 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!