Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The dental intracanal disinfection is crucial to achieve the success of endodontic treatment, avoiding the maintenance of endodontic infections. Chlorhexidine digluconate can act as an irrigating agent for it. However, it can cause tissue irritation in high concentrations. Therefore, combinations with other antimicrobial agents and more efficient therapeutic alternatives are studied, which make it possible to administer drugs more safely and with minimal adverse effects. Thus, the objective of this study was the development of a microemulsion containing chlorhexidine digluconate and essential oil of Lippia sidoides to be used for disinfection of dental root canals and to evaluate its profile of substantivity and antimicrobial activity. The microemulsions were obtained through phase diagrams, using the spontaneous formation method. We completed a physical-chemical characterization and evaluate the stability of the microemulsions, in addition to the substantivity profile in a bovine root dentin model, and in vitro antibacterial effect on Enterococcus faecalis. A method for quantifying chlorhexidine was developed using UV-Vis spectroscopy. The microemulsions showed acid pH, conductivity above 1.3 μScm, and dispersion index similar to water. The microemulsions showed antimicrobial inhibition halos similar to the commercial gel conventionally used, but with four times more substantivity to dentinal tissues. Microemulsions were obtained as a therapeutic alternative to formulations available on the market, presenting themselves as a system with great potential for the administration of drugs for disinfection of root canals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1208/s12249-020-01842-6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!