Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Selenium vacancy engineering has been realized in Co0.85Se nanoparticles via an anoxic melting strategy, where the vacancy content can be continuously controlled to modulate atomic disordering. The resulting Co0.85Se-30 catalyst requires a super low overpotential of 243 mV to achieve 10 mA cm-2 for the OER with a Tafel slope of 45.5 mV dec-1 and 70 h stability. In-depth electrochemical analysis finds that the outstanding properties are chiefly attributed to the dynamic Co-centers, giving the highest intrinsic activity (jCo = 6.49 A g-1 at η = 270 mV) and lowest apparent activation energy (42.43 kJ mol-1).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d0cc06336c | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!