A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Inactivation and Site-specific Oxidation of Aquatic Extracellular Bacterial Leucine Aminopeptidase by Singlet Oxygen. | LitMetric

Extracellular enzymes are master recyclers of organic matter, and to predict their functional lifetime, we need to understand their environmental transformation processes. In surface waters, direct and indirect photochemical transformation is a known driver of inactivation. We investigated molecular changes that occur along with inactivation in aminopeptidase, an abundant class of extracellular enzymes. We studied the inactivation kinetics and localized oxidation caused by singlet oxygen, O, a major photochemically derived oxidant toward amino acids. Aminopeptidase showed second-order inactivation rate constants with O comparable to those of free amino acids. We then visualized site-specific oxidation kinetics within the three-dimensional protein and demonstrated that fastest oxidation occurred around the active site and at other reactive amino acids. However, second-order oxidation rate constants did not correlate strictly with the O-accessible surface areas of those amino acids. We inspected site-specific processes by a comprehensive suspect screening for 723,288 possible transformation products. We concluded that histidine involved in zinc coordination at the active site reacted slower than what was expected by its accessibility, and we differentiated between two competing reaction pathways of O with tryptophan residues. This systematic analysis can be directly applied to other proteins and transformation reactions.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.0c04696DOI Listing

Publication Analysis

Top Keywords

amino acids
16
site-specific oxidation
8
singlet oxygen
8
extracellular enzymes
8
rate constants
8
active site
8
inactivation
5
oxidation
5
inactivation site-specific
4
oxidation aquatic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!