Aqueous zinc-ion batteries (ZIBs) have emerged as the most promising alternative energy storage system, but the development of a suitable cathode and the issues of Zn anodes have remained challenging. Herein, an effective strategy of high-capacity layered MgVO·HO (MgVO) nanobelts together with a concentrated 3 M Zn(CFSO) polyacrylamide gel electrolyte was proposed to achieve a durable and practical ZIB system. By adopting the designed concentrated gel electrolyte which not only inherits the high-voltage window and wide operating temperature of the concentrated electrolyte but also addresses the Zn dendrite formation problem, the prepared cathode exhibits an ultrahigh capacity of 470 mAh g and a high rate capability of 345 mAh g at 5.0 A g, and the assembled quasi-solid-state ZIBs achieve 95% capacity retention over 3000 cycles as well as a wide operating temperature from -30 to 80 °C, demonstrating a promising prospect for large-scale energy storage. X-ray diffraction, X-ray photoelectron spectroscopy, and thermogravimetric analysis (TGA) investigations also demonstrate a complex reaction mechanism for this cathode involving the (de)insertion of Zn, H, and water molecules during cycling. The water molecules will reinsert into the interlayer and act as "pillars" to stabilize the host structure when Zn is fully extracted.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.0c06834DOI Listing

Publication Analysis

Top Keywords

gel electrolyte
12
high-capacity layered
8
concentrated gel
8
energy storage
8
wide operating
8
operating temperature
8
water molecules
8
layered magnesium
4
magnesium vanadate
4
concentrated
4

Similar Publications

Copper-cobalt diatomic bifunctional oxygen electrocatalysts based on three-dimensional porous nitrogen-doped carbon frameworks for high-performance zinc-air batteries.

J Colloid Interface Sci

December 2024

State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300401, PR China; Engineering Research Center of Ministry of Education for Intelligent Rehabilitation Device and Detection Technology, Hebei University of Technology, Tianjin 300401, PR China; Hebei Key Laboratory of Smart Sensing and Human-Robot Interaction, Hebei University of Technology, Tianjin 300401, PR China; School of Mechanical Engineering, Hebei University of Technology, 5340 Xiping Road, Beichen District, Tianjin 300401, PR China. Electronic address:

Transition-metal-loaded carbon-based electrocatalysts are promising alternatives to conventional precious metal electrocatalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in high-performance zinc-air batteries. However, efficiently doping transition-metal single atoms onto carbon-based frameworks is a significant challenge. Herein, an improved template-sacrificing method combining a two-step carbonization process is proposed to fabricate Cu/Co diatomic sites coanchored on a three-dimensional nitrogen-doped carbon-based framework.

View Article and Find Full Text PDF

Compared to traditional liquid electrolytes, solid electrolytes have received widespread attention due to their higher safety. In this work, a vinyl functionalized metal-organic framework porous material (MIL-101(Cr)-NH-Met, noted as MCN-M) is synthesized by postsynthetic modification. A novel three-dimensional hybrid gel composite solid electrolyte (GCSE-P/MCN-M) is successfully prepared via in situ gel reaction of a mixture containing multifunctional hybrid crosslinker (MCN-M), lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), ethylene carbonate (EC), diethylene glycol monomethyl ether methacrylate (EGM) and polyethylene (vinylidene fluoridee) (PVDF).

View Article and Find Full Text PDF

Flexible solid-state-based supercapacitors are in demand for the soft components used in electronics. The increased attention paid toward solid-state electrolytes could be due to their advantages, including no leakage, special separators, and improved safety. Gel polymer electrolytes (GPEs) are preferred in the energy storage field, likely owing to their safety, lack of leakage, and compatibility with various separators as well as their higher ionic conductivity (IC) than traditional solid electrolytes.

View Article and Find Full Text PDF

Polymerizable ionic liquid-based gel polymer electrolytes (PIL-GPEs) were developed for the first time using high-energy electron beam irradiation for high-performance lithium-ion batteries (LIBs). By incorporating an imidazolium-based ionic liquid (PIL) into the polymer network, PIL-GPEs achieved high ionic conductivity (1.90 mS cm at 25 °C), a lithium transference number of 0.

View Article and Find Full Text PDF

In this work, a battery layup consisting of a poorly flammable ionic liquid electrolyte and a poly(vinylidene fluoride--hexafluoropropylene) (PVdF-HFP) thermoplastic has been developed along with composite anode and cathode electrodes. The developed gel electrolyte exhibits feasible ionic conductivity of about 1 mS/cm at 30 °C. State-of-the-art active electrode materials, i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!